
Jennifer L W Carter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/814705/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Data-Driven Framework to Select a Cost-Efficient Subset of Parameters to Qualify Sourced Materials. Integrating Materials and Manufacturing Innovation, 2022, 11, 339-351.	2.6	3
2	Informatics-Enabled Design of Structural Materials. Jom, 2021, 73, 3323-3325.	1.9	2
3	Predictions of long-term creep life for the family of 9–12 wt% Cr martensitic steels. Journal of Alloys and Compounds, 2020, 815, 152417.	5.5	13
4	Inâ€situ observation of AlN formation from Niâ€Al solution using an electromagnetic levitation technique. Journal of the American Ceramic Society, 2020, 103, 2389-2398.	3.8	3
5	Harnessing Legacy Data to Educate Data-Enabled Structural Materials Engineers. MRS Advances, 2020, 5, 319-327.	0.9	4
6	Computer Vision Approaches for Segmentation of Nanoscale Precipitates in Nickel-Based Superalloy IN718. Integrating Materials and Manufacturing Innovation, 2020, 9, 446-458.	2.6	8
7	Exploration of the sliding behavior of a Σ11 grain boundary with precipitates in Ni–Al system using molecular dynamics. Materialia, 2019, 7, 100383.	2.7	7
8	Screening of heritage data for improving toughness of creep-resistant martensitic steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 763, 138142.	5.6	12
9	Mapping Multivariate Influence of Alloying Elements on Creep Behavior for Design of New Martensitic Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 3106-3120.	2.2	28
10	Materials data analytics for 9% Cr family steel. Statistical Analysis and Data Mining, 2019, 12, 290-301.	2.8	9
11	Effects of Changes in Test Temperature on Tensile Properties and Notched Vs Fatigue Precracked Toughness of a Zr-Based BMG Composite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 3220-3230.	2.2	4
12	Physics-Informed Network Models: a Data Science Approach to Metal Design. Integrating Materials and Manufacturing Innovation, 2017, 6, 279-287.	2.6	5
13	A statistical study of the effects of processing upon the creep properties of GRCop-84. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 640, 1-15.	5.6	4
14	An improved method for calculation of elastic constants of metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 634, 183-187.	5.6	1
15	The potential link between high angle grain boundary morphology and grain boundary deformation in a nickel-based superalloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 640, 280-286.	5.6	5
16	Characterization of localized deformation near grain boundaries of superalloy René-104 at elevated temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 605, 127-136.	5.6	42
17	EBSD Analysis for Microstructure Characterization of Zr-based Bulk Metallic Glass Composites. Microscopy and Microanalysis, 2014, 20, 852-853.	0.4	23
18	In-Situ Mechanical Testing for Characterizing Strain Localization During Deformation at Elevated Temperatures. Experimental Mechanics, 2012, 52, 405-416.	2.0	56

#	Article	IF	CITATIONS
19	The influence of post-processing on creep and microstructure of rolled Cu–8Cr–4Nb. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 6956-6962.	5.6	11
20	Low-Cycle Fatigue of Ultra-Fine-Grained Cryomilled 5083 Aluminum Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 2622-2630.	2.2	12
21	Influence of processing on the microstructure of Cu–8Cr–4Nb. Journal of Materials Science, 2008, 43, 6546-6555.	3.7	11