
Jeremy H Mills

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8146859/publications.pdf Version: 2024-02-01

IEDEMY H MILLS

#	Article	IF	CITATIONS
1	Structural Basis for Blocked Excited State Proton Transfer in a Fluorescent, Photoacidic Non-Canonical Amino Acid-Containing Antibody Fragment. Journal of Molecular Biology, 2022, 434, 167455.	4.2	1
2	Coumarin luciferins and mutant luciferases for robust multi-component bioluminescence imaging. Chemical Science, 2021, 12, 11684-11691.	7.4	13
3	The Role of Rigid Residues in Modulating TEM-1 β-Lactamase Function and Thermostability. International Journal of Molecular Sciences, 2021, 22, 2895.	4.1	7
4	Structural Origins of Altered Spectroscopic Properties upon Ligand Binding in Proteins Containing a Fluorescent Noncanonical Amino Acid. Biochemistry, 2021, 60, 2577-2585.	2.5	3
5	Multicomponent Bioluminescence Imaging with a π-Extended Luciferin. Journal of the American Chemical Society, 2020, 142, 14080-14089.	13.7	39
6	Structural Insights into How Protein Environments Tune the Spectroscopic Properties of a Noncanonical Amino Acid Fluorophore. Biochemistry, 2020, 59, 3401-3410.	2.5	7
7	An intrinsic FRET sensor of protein–ligand interactions. Organic and Biomolecular Chemistry, 2020, 18, 4079-4084.	2.8	6
8	A General Strategy for Engineering Noncanonical Amino Acid Dependent Bacterial Growth. Journal of the American Chemical Society, 2019, 141, 16213-16216.	13.7	15
9	Metal-chelating non-canonical amino acids in metalloprotein engineering and design. Current Opinion in Structural Biology, 2018, 51, 170-176.	5.7	14
10	Computational design of a homotrimeric metalloprotein with a trisbipyridyl core. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 15012-15017.	7.1	41
11	Computational Design of Multinuclear Metalloproteins Using Unnatural Amino Acids. Methods in Molecular Biology, 2016, 1414, 173-185.	0.9	2
12	Trapping a transition state in a computationally designed protein bottle. Science, 2015, 347, 863-867.	12.6	36
13	Computational Design of an Unnatural Amino Acid Dependent Metalloprotein with Atomic Level Accuracy. Journal of the American Chemical Society, 2013, 135, 13393-13399.	13.7	95
14	Expanding the Product Profile of a Microbial Alkane Biosynthetic Pathway. ACS Synthetic Biology, 2013, 2, 59-62.	3.8	67
15	Computational Design of an α-Gliadin Peptidase. Journal of the American Chemical Society, 2012, 134, 20513-20520.	13.7	106
16	Improvement of a Potential Anthrax Therapeutic by Computational Protein Design. Journal of Biological Chemistry, 2011, 286, 32586-32592.	3.4	10
17	A Genetically Encoded Direct Sensor of Antibody–Antigen Interactions. ChemBioChem, 2009, 10, 2162-2164.	2.6	23
18	Evolution of Proteins with Genetically Encoded "Chemical Warheads― Journal of the American Chemical Society, 2009, 131, 9616-9617.	13.7	66

JEREMY H MILLS

#	Article	IF	CITATIONS
19	Protein evolution with an expanded genetic code. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17688-17693.	7.1	138
20	Lewis acid promoted Kharasch-type additions of 3-bromoacetyl-2-oxazolidinone to cycloalkenes. Journal of Chemical Research, 2005, 2005, 59-61.	1.3	2
21	A Catalysis-Based Selection for Peroxidase Antibodies with Increased Activity. Journal of the American Chemical Society, 2004, 126, 3006-3007.	13.7	28
22	Theoretical Calculations of Carbonâ~'Oxygen Bond Dissociation Enthalpies of Peroxyl Radicals Formed in the Autoxidation of Lipids. Journal of the American Chemical Society, 2003, 125, 5801-5810.	13.7	148
23	Streptococcus pneumoniae PstS Production Is Phosphate Responsive and Enhanced during Growth in the Murine Peritoneal Cavity. Infection and Immunity, 2001, 69, 7565-7571.	2.2	17