Héctor Hernando

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8146278/publications.pdf Version: 2024-02-01

HÃOCTOP HERNANDO

#	Article	IF	CITATIONS
1	Lamellar and pillared ZSM-5 zeolites modified with MgO and ZnO for catalytic fast-pyrolysis of eucalyptus woodchips. Catalysis Today, 2016, 277, 171-181.	2.2	116
2	Engineering the acidity and accessibility of the zeolite ZSM-5 for efficient bio-oil upgrading in catalytic pyrolysis of lignocellulose. Green Chemistry, 2018, 20, 3499-3511.	4.6	101
3	Biomass catalytic fast pyrolysis over hierarchical ZSM-5 and Beta zeolites modified with Mg and Zn oxides. Biomass Conversion and Biorefinery, 2017, 7, 289-304.	2.9	67
4	Bio-oil production by lignocellulose fast-pyrolysis: Isolating and comparing the effects of indigenous versus external catalysts. Fuel Processing Technology, 2017, 167, 563-574.	3.7	48
5	The crucial role of clay binders in the performance of ZSM-5 based materials for biomass catalytic pyrolysis. Catalysis Science and Technology, 2019, 9, 789-802.	2.1	35
6	ZSM-5 zeolites performance assessment in catalytic pyrolysis of PVC-containing real WEEE plastic wastes. Catalysis Today, 2022, 390-391, 210-220.	2.2	34
7	Performance of MCM-22 zeolite for the catalytic fast-pyrolysis of acid-washed wheat straw. Catalysis Today, 2018, 304, 30-38.	2.2	32
8	Evaluating fractional pyrolysis for bio-oil speciation into holocellulose and lignin derived compounds. Journal of Analytical and Applied Pyrolysis, 2021, 154, 105019.	2.6	19
9	Scalingâ€Up of Bioâ€Oil Upgrading during Biomass Pyrolysis over ZrO ₂ /ZSMâ€5â€Attapulgite. ChemSusChem, 2019, 12, 2428-2438.	3.6	17
10	Enhanced bio-oil upgrading in biomass catalytic pyrolysis using KH-ZSM-5 zeolite with acid-base properties. Biomass Conversion and Biorefinery, 2021, 11, 2311-2323.	2.9	16
11	Effect of Mesoporosity, Acidity and Crystal Size of Zeolite ZSMâ€5 on Catalytic Performance during the Exâ€situ Catalytic Fast Pyrolysis of Biomass. ChemCatChem, 2021, 13, 1207-1219.	1.8	16
12	Catalytic Copyrolysis of Lignocellulose and Polyethylene Blends over HBeta Zeolite. Industrial & Engineering Chemistry Research, 2019, 58, 6243-6254.	1.8	14
13	Cascade Deoxygenation Process Integrating Acid and Base Catalysts for the Efficient Production of Second-Generation Biofuels. ACS Sustainable Chemistry and Engineering, 2019, 7, 18027-18037.	3.2	11
14	Selective Decarboxylation of Fatty Acids Catalyzed by Pd-Supported Hierarchical ZSM-5 Zeolite. Energy & Fuels, 2021, 35, 17167-17181.	2.5	11
15	Upscaling Effects on Alkali Metalâ€Grafted Ultrastable Y Zeolite Extrudates for Modeled Catalytic Deoxygenation of Bioâ€oils. ChemCatChem, 2021, 13, 1951-1965.	1.8	7
16	Deactivation and regeneration of solid acid and base catalyst bodies used in cascade for bio-oil synthesis and upgrading. Journal of Catalysis, 2022, 405, 641-651.	3.1	3
17	Utilisation of a basic K-grafted USY zeolite in catalytic pyrolysis of wheat straw to produce valuable oxygenated compounds. Catalysis Today, 2022, 390-391, 198-209.	2.2	1