Rawil F Fakhrullin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8146159/publications.pdf

Version: 2024-02-01

		38660	56606
141	7,782	50	83
papers	citations	h-index	g-index
145	145	145	6480
143	143	143	0400
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Biomimetic Composite Materials and Their Biological Applications. Nanostructure Science and Technology, 2022, , 459-479.	0.1	O
2	Label-free identification of microplastics in human cells: dark-field microscopy and deep learning study. Analytical and Bioanalytical Chemistry, 2022, 414, 1297-1312.	1.9	20
3	Hair surface engineering: Combining nanoarchitectonics with hair topical and beauty formulations. Applied Surface Science Advances, 2022, 7, 100188.	2.9	9
4	Nanomechanical Atomic Force Microscopy to Probe Cellular Microplastics Uptake and Distribution. International Journal of Molecular Sciences, 2022, 23, 806.	1.8	27
5	DNA/Magnetic Nanoparticles Composite to Attenuate Glass Surface Nanotopography for Enhanced Mesenchymal Stem Cell Differentiation. Polymers, 2022, 14, 344.	2.0	15
6	Probing Diffusive Dynamics of Natural Tubule Nanoclays with Machine Learning. ACS Nano, 2022, 16, 5867-5873.	7.3	12
7	Materials Nanoarchitectonics from Atom to Living Cell: A Method for Everything. Bulletin of the Chemical Society of Japan, 2022, 95, 774-795.	2.0	65
8	Porous Alginate Scaffolds Designed by Calcium Carbonate Leaching Technique. Advanced Functional Materials, 2022, 32, .	7.8	14
9	Architectural design of core–shell nanotube systems based on aluminosilicate clay. Nanoscale Advances, 2022, 4, 2823-2835.	2.2	22
10	Photoinduced Antibacterial Activity and Cytotoxicity of CdS Stabilized on Mesoporous Aluminosilicates and Silicates. Pharmaceutics, 2022, 14, 1309.	2.0	3
11	Prokaryotic and eukaryotic toxicity of halloysite decorated with photoactive nanoparticles. Chemical Communications, 2022, 58, 7719-7729.	2.2	10
12	Mesoporous additive-free vaterite CaCO3 crystals of untypical sizes: From submicron to Giant. Materials and Design, 2021, 197, 109220.	3.3	34
13	Worms eat oil: Alcanivorax borkumensis hydrocarbonoclastic bacteria colonise Caenorhabditis elegans nematodes intestines as a first step towards oil spills zooremediation. Science of the Total Environment, 2021, 761, 143209.	3.9	10
14	Nanoarchitectonics on living cells. RSC Advances, 2021, 11, 18898-18914.	1.7	22
15	Recent advances in the design of inorganic and nano-clay particles for the treatment of brain disorders. Journal of Materials Chemistry B, 2021, 9, 2756-2784.	2.9	32
16	Dark-field hyperspectral microscopy for label-free microplastics and nanoplastics detection and identification inÂvivo: A Caenorhabditis elegans study. Environmental Pollution, 2021, 271, 116337.	3.7	43
17	Restoration of a XVII Century's predella reliquary: From Physico-Chemical Characterization to the Conservation Process. Forests, 2021, 12, 345.	0.9	6
18	Comparative Toxicity of Fly Ash: An In Vitro Study. Molecules, 2021, 26, 1926.	1.7	10

#	Article	IF	CITATIONS
19	Comparative cytotoxicity of kaolinite, halloysite, multiwalled carbon nanotubes and graphene oxide. Applied Clay Science, 2021, 205, 106041.	2.6	73
20	Dark-field/hyperspectral microscopy for detecting nanoscale particles in environmental nanotoxicology research. Science of the Total Environment, 2021, 772, 145478.	3.9	51
21	Fluorescent gold nanoclusters stabilized on halloysite nanotubes: in vitro study on cytotoxicity. Applied Clay Science, 2021, 207, 106106.	2.6	22
22	Revisiting the Cytotoxicity of Cationic Polyelectrolytes as a Principal Component in Layer-by-Layer Assembly Fabrication. Pharmaceutics, 2021, 13, 1230.	2.0	10
23	Biodistribution of Quantum Dots-Labelled Halloysite Nanotubes: A Caenorhabditis elegans In Vivo Study. Materials, 2021, 14, 5469.	1.3	14
24	Pharmaceuticals Removal by Adsorption with Montmorillonite Nanoclay. International Journal of Molecular Sciences, 2021, 22, 9670.	1.8	22
25	Clay Nanotube Immobilization on Animal Hair for Sustained Anti-Lice Protection. Pharmaceutics, 2021, 13, 1477.	2.0	15
26	Petr Rychkov's Map of Iske (Inner or Old) Kazan of 4 July 1770. Zolotoordynskoe Obozrenie, 2021, 9, 593-610.	0.1	0
27	Self-assembled peptide nanoparticles for enhanced dark-field hyperspectral imaging at the cellular and invertebrate level. Chemical Engineering Journal, 2021, 424, 130348.	6.6	24
28	Probing Antimicrobial Halloysite/Biopolymer Composites with Electron Microscopy: Advantages and Limitations. Polymers, 2021, 13, 3510.	2.0	7
29	Sequence Does Not Matter: The Biomedical Applications of DNA-Based Coatings and Cores. International Journal of Molecular Sciences, 2021, 22, 12884.	1.8	6
30	Biogenic Silver Nanoparticles: Synthesis and Application as Antibacterial and Antifungal Agents. Micromachines, 2021, 12, 1480.	1.4	47
31	Forskolin-Loaded Halloysite Nanotubes as Osteoconductive Additive for the Biopolymer Tissue Engineering Scaffolds. Polymers, 2021, 13, 3949.	2.0	7
32	COMPOSITE BIODEGRADABLE POLYMERIC MATRIX DOPED WITH HALLOYSITE NANOTUBES FOR THE REPAIR OF BONE DEFECTS IN DOGS. Clays and Clay Minerals, 2021, 69, 522-532.	0.6	10
33	Extracellular Vesicles from Mycoplasmas Can Penetrate Eukaryotic Cells <i>In Vitro</i> and Modulate the Cellular Proteome. , 2021, 13, 82-88.		1
34	Dark-Field Hyperspectral Microscopy for Carbon Nanotubes Bioimaging. Applied Sciences (Switzerland), 2021, 11, 12132.	1.3	5
35	Force interactions between Yersiniae lipopolysaccharides and monoclonal antibodies: An optical tweezers study. Journal of Biomechanics, 2020, 99, 109504.	0.9	6
36	Clay Nanotube Liquid Marbles Enhanced with Inner Biofilm Formation for the Encapsulation and Storage of Bacteria at Room Temperature. ACS Applied Nano Materials, 2020, 3, 1263-1271.	2.4	27

#	Article	IF	Citations
37	Cytocompatibility and cellular uptake of alkylsilane-modified hydrophobic halloysite nanotubes. Applied Clay Science, 2020, 185, 105371.	2.6	40
38	Facile Fabrication of Natural Polyelectrolyte-Nanoclay Composites: Halloysite Nanotubes, Nucleotides and DNA Study. Molecules, 2020, 25, 3557.	1.7	23
39	Bidirectional alterations in antibiotics susceptibility in Staphylococcus aureus—Pseudomonas aeruginosa dual-species biofilm. Scientific Reports, 2020, 10, 14849.	1.6	45
40	Editorial: Functionalized Nanocarriers for Theranostics. Frontiers in Bioengineering and Biotechnology, 2020, 8, 616574.	2.0	0
41	Halloysite/Keratin Nanocomposite for Human Hair Photoprotection Coating. ACS Applied Materials & Samp; Interfaces, 2020, 12, 24348-24362.	4.0	96
42	Selective Cytotoxic Activity of Prodigiosin@halloysite Nanoformulation. Frontiers in Bioengineering and Biotechnology, 2020, 8, 424.	2.0	41
43	Naturally derived nano- and micro-drug delivery vehicles: halloysite, vaterite and nanocellulose. New Journal of Chemistry, 2020, 44, 5638-5655.	1.4	72
44	Ru/CdS Quantum Dots Templated on Clay Nanotubes as Visibleâ€Lightâ€Active Photocatalysts: Optimization of S/Cd Ratio and Ru Content. Chemistry - A European Journal, 2020, 26, 13085-13092.	1.7	48
45	Self-assembly of concentric microrings of tubule and platy nanoclays for cell patterning and capturing. Applied Clay Science, 2020, 195, 105707.	2.6	15
46	Antibacterial properties and ⟨i⟩in vivo⟨ i⟩ studies of tannic acid-stabilized silver–halloysite nanomaterials. Clay Minerals, 2020, 55, 112-119.	0.2	17
47	Ionic clathrate hydrates loaded into a cryogel – halloysite clay composite for cold storage. Applied Clay Science, 2020, 191, 105618.	2.6	21
48	Clay Composites for Thermal Energy Storage: A Review. Molecules, 2020, 25, 1504.	1.7	23
49	Introduction: overview of nanoclays. , 2020, , xv.		1
50	Nanoarchitectonics meets cell surface engineering: shape recognition of human cells by halloysite-doped silica cell imprints. Beilstein Journal of Nanotechnology, 2019, 10, 1818-1825.	1.5	24
51	Halloysite Nanoclay/Biopolymers Composite Materials in Tissue Engineering. Biotechnology Journal, 2019, 14, e1900055.	1.8	42
52	Cytocompatibility and uptake of polycations-modified halloysite clay nanotubes. Applied Clay Science, 2019, 169, 21-30.	2.6	67
53	Interfacial Self-Assembly in Halloysite Nanotube Composites. Langmuir, 2019, 35, 8646-8657.	1.6	82
54	Spatial manipulation of magnetically-responsive nanoparticle engineered human neuronal progenitor cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 20, 102038.	1.7	15

#	Article	IF	CITATIONS
55	Kaolin alleviates the toxicity of graphene oxide for mammalian cells. MedChemComm, 2019, 10, 1457-1464.	3.5	19
56	Selective Antimicrobial Effects of Curcumin@Halloysite Nanoformulation: A <i>Caenorhabditis elegans</i> Study. ACS Applied Materials & Diterfaces, 2019, 11, 23050-23064.	4.0	73
57	Antimicrobial Applications of Clay Nanotube-Based Composites. Nanomaterials, 2019, 9, 708.	1.9	71
58	Peptide-modulated self-assembly as a versatile strategy for tumor supramolecular nanotheranostics. Theranostics, 2019, 9, 3249-3261.	4.6	60
59	Pickering Emulsion Gels Based on Halloysite Nanotubes and Ionic Biopolymers: Properties and Cleaning Action on Marble Surface. ACS Applied Nano Materials, 2019, 2, 3169-3176.	2.4	71
60	Cryogel composites based on hyaluronic acid and halloysite nanotubes as scaffold for tissue engineering. International Journal of Biological Macromolecules, 2019, 130, 627-635.	3.6	77
61	Core/Shell Gel Beads with Embedded Halloysite Nanotubes for Controlled Drug Release. Coatings, 2019, 9, 70.	1.2	52
62	Unraveling the Molecular Mechanism of Selective Antimicrobial Activity of 2(5H)-Furanone Derivative against Staphylococcus aureus. International Journal of Molecular Sciences, 2019, 20, 694.	1.8	23
63	Organic-nanoclay composite materials as removal agents for environmental decontamination. RSC Advances, 2019, 9, 40553-40564.	1.7	54
64	Tubule Nanoclayâ€Organic Heterostructures for Biomedical Applications. Macromolecular Bioscience, 2019, 19, e1800419.	2.1	87
65	Multicellular spheroids formation: The synergistic effects of halloysite nanoclay and cationic magnetic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 565, 16-24.	2.3	21
66	Advanced Microscopy Techniques for Nanoscale Diagnostic of Cultural Heritage., 2019, , 1-23.		1
67	Caenorhabditis elegans Nematode: A Versatile Model to Evaluate the Toxicity of Nanomaterials In Vivo. , 2019, , 323-345.		1
68	Mesoporous inorganic nanoscale particles for drug adsorption and controlled release. Therapeutic Delivery, 2018, 9, 287-301.	1.2	22
69	Kaolin Alleviates Graphene Oxide Toxicity. Environmental Science and Technology Letters, 2018, 5, 295-300.	3.9	41
70	An assembly of organic-inorganic composites using halloysite clay nanotubes. Current Opinion in Colloid and Interface Science, 2018, 35, 42-50.	3.4	316
71	Nanohydrogel Formation within the Halloysite Lumen for Triggered and Sustained Release. ACS Applied Materials & Samp; Interfaces, 2018, 10, 8265-8273.	4.0	155
72	Targeted and theranostic applications for nanotechnologies in medicine. , 2018, , 399-511.		7

#	Article	IF	CITATIONS
73	Molecular dynamics of the halloysite nanotubes. Physical Chemistry Chemical Physics, 2018, 20, 5841-5849.	1.3	39
74	Uptake of halloysite clay nanotubes by human cells: Colourimetric viability tests and microscopy study. Nano Structures Nano Objects, 2018, 15, 54-60.	1.9	41
75	Stabilized Dye–Pigment Formulations with Platy and Tubular Nanoclays. Advanced Functional Materials, 2018, 28, 1703553.	7.8	64
76	The Effect of Mammalian Cell Functionalization with Polycation and Halloysite Nanotubes on Intercellular Interactions. BioNanoScience, 2018, 8, 310-312.	1.5	7
77	Simultaneous Intracellular Detection of Plasmonic and Non-Plasmonic Nanoparticles Using Dark-Field Hyperspectral Microscopy. Bulletin of the Chemical Society of Japan, 2018, 91, 1640-1645.	2.0	32
78	Atomic force microscopy for imaging and nanomechanical characterisation of live nematode epicuticle: A comparative Caenorhabditis elegans and Turbatrix aceti study. Ultramicroscopy, 2018, 194, 40-47.	0.8	21
79	Fluorescence and Cytotoxicity of Cadmium Sulfide Quantum Dots Stabilized on Clay Nanotubes. Nanomaterials, 2018, 8, 391.	1.9	43
80	Self-assembly of clay nanotubes on hair surface for medical and cosmetic formulations. Nanoscale, 2018, 10, 18205-18216.	2.8	105
81	Targeting microbial biofilms using Ficin, a nonspecific plant protease. Scientific Reports, 2017, 7, 46068.	1.6	93
82	Paclitaxel Encapsulated in Halloysite Clay Nanotubes for Intestinal and Intracellular Delivery. Journal of Pharmaceutical Sciences, 2017, 106, 3131-3139.	1.6	98
83	Clay-based drug-delivery systems: what does the future hold?. Therapeutic Delivery, 2017, 8, 633-646.	1.2	49
84	Nanoscale imaging and characterization of Caenorhabditis elegans epicuticle using atomic force microscopy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 483-491.	1.7	22
85	Halloysites Stabilized Emulsions for Hydroformylation of Long Chain Olefins. Advanced Materials Interfaces, 2017, 4, 1600435.	1.9	57
86	Fabrication of Magnetically Responsive Agarose Microbeads Doped with Live Microbial Cells. BioNanoScience, 2017, 7, 75-77.	1.5	2
87	Binase Immobilized on Halloysite Nanotubes Exerts Enhanced Cytotoxicity toward Human Colon Adenocarcinoma Cells. Frontiers in Pharmacology, 2017, 8, 631.	1.6	28
88	Halloysite Nanotubes: Controlled Access and Release by Smart Gates. Nanomaterials, 2017, 7, 199.	1.9	93
89	Antimicrobial Effects of Sulfonyl Derivative of 2(5H)-Furanone against Planktonic and Biofilm Associated Methicillin-Resistant and -Susceptible Staphylococcus aureus. Frontiers in Microbiology, 2017, 8, 2246.	1.5	46
90	Assessment of Resistance and Bioremediation Ability of <i>Lactobacillus </i> Strains to Lead and Cadmium. International Journal of Microbiology, 2017, 2017, 1-7.	0.9	55

#	Article	IF	CITATIONS
91	Nematode Epicuticle Visualisation by PeakForce Tapping Atomic Force Microscopy. Bio-protocol, 2017, 7, e2596.	0.2	1
92	Boron Nitride Nanotubes and Layer-By-Layer Polyelectrolyte Coating for Yeast Cell Surface Engineering. ChemNanoMat, 2016, 2, 426-429.	1.5	15
93	Turning Diamagnetic Microbes into Multinary Micro-Magnets: Magnetophoresis and Spatio-Temporal Manipulation of Individual Living Cells. Scientific Reports, 2016, 6, 38517.	1.6	25
94	The application of halloysite tubule nanoclay in drug delivery. Expert Opinion on Drug Delivery, 2016, 13, 977-986.	2.4	222
95	Clay nanotube–biopolymer composite scaffolds for tissue engineering. Nanoscale, 2016, 8, 7257-7271.	2.8	178
96	Surface-Enhanced Raman Scattering to Evaluate Nanomaterial Cytotoxicity on Living Cells. Analytical Chemistry, 2016, 88, 9813-9820.	3.2	40
97	Halloysite clay nanotubes for tissue engineering. Nanomedicine, 2016, 11, 2243-2246.	1.7	77
98	Fabrication of Magnetically Modified Chlorella pyrenoidosa Microalgae Using Poly(diallyldimethyl) Tj ETQq0 0 0 r	rgBT_/Over	lock 10 Tf 50
99	Magnetic halloysite nanotubes for yeast cell surface engineering. Clay Minerals, 2016, 51, 429-433.	0.2	27
100	Nanoshell Assembly for Magnet-Responsive Oil-Degrading Bacteria. Langmuir, 2016, 32, 12552-12558.	1.6	60
101	Halloysite Clay Nanotubes for Loading and Sustained Release of Functional Compounds. Advanced Materials, 2016, 28, 1227-1250.	11.1	779
102	Evaluation of toxicity of nanoclays and graphene oxide in vivo: a Paramecium caudatum study. Environmental Science: Nano, 2016, 3, 442-452.	2.2	174
103	CHAPTER 15. Toxicological Evaluation of Clay Nanomaterials and Polymer–Clay Nanocomposites. RSC Smart Materials, 2016, , 399-419.	0.1	2
104	Enzyme-activated intracellular drug delivery with tubule clay nanoformulation. Scientific Reports, 2015, 5, 10560.	1.6	163
105	Cell surface engineering with polyelectrolyte-stabilized magnetic nanoparticles: A facile approach for fabrication of artificial multicellular tissue-mimicking clusters. Nano Research, 2015, 8, 2515-2532.	5.8	63
106	Silver nanoparticle-coated "cyborg―microorganisms: rapid assembly of polymer-stabilised nanoparticles on microbial cells. RSC Advances, 2015, 5, 13530-13537.	1.7	36
107	Liposomes loaded with hydrophilic magnetite nanoparticles: Preparation and application as contrast agents for magnetic resonance imaging. Colloids and Surfaces B: Biointerfaces, 2015, 135, 109-115.	2.5	68
108	Halloysite Clay Nanotube Composites with Sustained Release of Chemicals. NATO Science for Peace and Security Series C: Environmental Security, 2015, , 87-118.	0.1	7

#	Article	IF	Citations
109	Toxicity of halloysite clay nanotubes in vivo: a Caenorhabditis elegans study. Environmental Science: Nano, 2015, 2, 54-59.	2.2	237
110	Electrochemical DNA Sensors Based on Nanostructured Organic Dyes/DNA/Polyelectrolyte Complexes. Journal of Nanoscience and Nanotechnology, 2014, 14, 6738-6747.	0.9	27
111	Ceramic nanotubes for polymer composites with stable anticorrosion properties. Crystallography Reports, 2014, 59, 1107-1113.	0.1	12
112	Enhanced efficiency of antiseptics with sustained release from clay nanotubes. RSC Advances, 2014, 4, 488-494.	1.7	116
113	Clay nanotube encapsulation for functional biocomposites. Advances in Colloid and Interface Science, 2014, 207, 189-198.	7.0	182
114	Spherical and tubule nanocarriers for sustained drug release. Current Opinion in Pharmacology, 2014, 18, 141-148.	1.7	70
115	Composite films of natural clay nanotubes with cellulose and chitosan. Green Materials, 2014, 2, 232-242.	1.1	61
116	Nano-labelled cells—a functional tool in biomedical applications. Current Opinion in Pharmacology, 2014, 18, 84-90.	1.7	19
117	Layer-by-Layer Nanopreparations for Medicine — Smart Polyelectrolyte Multilayer Capsules and Coatings. Frontiers in Nanobiomedical Research, 2014, , 329-365.	0.1	2
118	Microworms swallow the nanobait: the use of nanocoated microbial cells for the direct delivery of nanoparticles into Caenorhabditis elegans. Nanoscale, 2013, 5, 11761.	2.8	30
119	Biomimetic cell-mediated three-dimensional assembly of halloysite nanotubes. Chemical Communications, 2013, 49, 4208.	2.2	117
120	Microfluidic device for the rapid coating of magnetic cells with polyelectrolytes. Materials Letters, 2013, 95, 182-185.	1.3	28
121	Surface-modified magnetic human cells for scaffold-free tissue engineering. Biomaterials Science, 2013, 1, 810.	2.6	27
122	"Face-Lifting―and "Make-Up―for Microorganisms: Layer-by-Layer Polyelectrolyte Nanocoating. ACS Nano, 2012, 6, 4557-4564.	7.3	177
123	Cyborg cells: functionalisation of living cells with polymers and nanomaterials. Chemical Society Reviews, 2012, 41, 4189.	18.7	253
124	Interfacing Multicellular Organisms with Polyelectrolyte Shells and Nanoparticles: A Caenorhabtidis elegans Study. Langmuir, 2011, 27, 7708-7713.	1.6	45
125	A whole-cell amperometric herbicide biosensor based on magnetically functionalised microalgae and screen-printed electrodes. Analytical Methods, 2011, 3, 509.	1.3	72
126	Functionalization of wholeâ€ell bacterial reporters with magnetic nanoparticles. Microbial Biotechnology, 2011, 4, 89-97.	2.0	81

#	Article	IF	Citations
127	Functional artificial free-standing yeast biofilms. Colloids and Surfaces B: Biointerfaces, 2011, 88, 656-663.	2.5	17
128	A Direct Technique for Magnetic Functionalization of Living Human Cells. Langmuir, 2011, 27, 14386-14393.	1.6	68
129	Microscreening toxicity system based on living magnetic yeast and gradient chips. Analytical and Bioanalytical Chemistry, 2011, 400, 1009-1013.	1.9	51
130	Interfacing Living Unicellular Algae Cells with Biocompatible Polyelectrolyteâ€Stabilised Magnetic Nanoparticles. Macromolecular Bioscience, 2010, 10, 1257-1264.	2.1	60
131	Rapid and direct magnetization of GFP-reporter yeast for micro-screening systems. Biosensors and Bioelectronics, 2010, 25, 1816-1819.	5.3	44
132	Directed assembly of yeast cells into living yeastosomes by microbubble templating. Soft Matter, 2010, 6, 3494.	1.2	45
133	Polyelectrolyte-Mediated Assembly of Multiwalled Carbon Nanotubes on Living Yeast Cells. Langmuir, 2010, 26, 2671-2679.	1.6	63
134	Live celloidosome structures based on the assembly of individual cells by colloid interactions. Physical Chemistry Chemical Physics, 2010, 12, 11912.	1.3	27
135	A direct technique for preparation of magnetically functionalised living yeast cells. Soft Matter, 2010, 6, 391-397.	1.2	85
136	Layer-by-layer coating of bacteria with noble metal nanoparticles for surface-enhanced Raman scattering. Analytical and Bioanalytical Chemistry, 2009, 395, 2559-2567.	1.9	122
137	Hybrid Cellularâ^'Inorganic Coreâ^'Shell Microparticles: Encapsulation of Individual Living Cells in Calcium Carbonate Microshells. Langmuir, 2009, 25, 6617-6621.	1.6	86
138	Magnetically Responsive Calcium Carbonate Microcrystals. ACS Applied Materials & Eamp; Interfaces, 2009, 1, 1847-1851.	4.0	38
139	Living Fungi Cells Encapsulated in Polyelectrolyte Shells Doped with Metal Nanoparticles. Langmuir, 2009, 25, 4628-4634.	1.6	86
140	Fabrication of living cellosomes of rod-like and rhombohedral morphologies based on magnetically responsive templates. Chemical Communications, 2009, , 2511.	2,2	42
141	Quartz crystal microbalance immunosensor for the detection of antibodies to double-stranded DNA. Analytical and Bioanalytical Chemistry, 2007, 388, 367-375.	1.9	21