
Stefan Naumann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8145509/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predictive design of ordered mesoporous silica with well-defined, ultra-large mesopores. Molecular Systems Design and Engineering, 2022, 7, 1318-1326.	1.7	2
2	A comparison of zwitterionic and anionic mechanisms in the dual-catalytic polymerization of lactide. Polymer Chemistry, 2021, 12, 5320-5327.	1.9	5
3	Ordered Mesoporous Carbons via Self-Assembly of Tailored Block Copolyethers for Pore Size-Dependent Applications. ACS Applied Nano Materials, 2021, 4, 3486-3492.	2.4	9
4	Strategies for Pore-Diameter Control in Mesoporous Carbons Derived from Organic Self-Assembly Processes. Organic Materials, 2021, 03, 283-294.	1.0	2
5	Controlled Synthesis of "Reverse Pluronicâ€â€Type Block Copolyethers with High Molar Masses for the Preparation of Hydrogels with Improved Mechanical Properties. Macromolecular Chemistry and Physics, 2020, 221, 1900437.	1.1	12
6	Ultrahigh-Molecular-Weight Poly(propylene oxide): Preparation and Perspectives. Synlett, 2020, 31, 641-647.	1.0	4
7	Dual catalysis with an N â€heterocyclic carbene and a Lewis acid: Thermally latent precatalyst for the polymerization of εâ€caprolactam. Journal of Polymer Science, 2020, 58, 3219-3226.	2.0	1
8	Dual Catalytic Ring-Opening Polymerization of Ethylene Carbonate for the Preparation of Degradable PEG. Biomacromolecules, 2020, 21, 2661-2669.	2.6	23
9	A simplified approach for the metal-free polymerization of propylene oxide. RSC Advances, 2020, 10, 43389-43393.	1.7	15
10	Synthesis, properties & applications of N-heterocyclic olefins in catalysis. Chemical Communications, 2019, 55, 11658-11670.	2.2	77
11	Darstellung von hochmolekularen Polyethern durch die zwitterionische Lewisâ€Paarâ€Polymerisation von Epoxiden. Angewandte Chemie, 2019, 131, 10848-10852.	1.6	14
12	Lewis Pair Polymerization of Epoxides via Zwitterionic Species as a Route to Highâ€Molarâ€Mass Polyethers. Angewandte Chemie - International Edition, 2019, 58, 10737-10741.	7.2	77
13	Proton Affinities of N-Heterocyclic Olefins and Their Implications for Organocatalyst Design. Journal of Organic Chemistry, 2019, 84, 2209-2218.	1.7	36
14	Synthesis of Linear Poly(oxazolidin-2-one)s by Cooperative Catalysis Based on <i>N</i> -Heterocyclic Carbenes and Simple Lewis Acids. Macromolecules, 2019, 52, 487-494.	2.2	17
15	Controlled preparation of amphiphilic triblock-copolyether in a metal- and solvent-free approach for tailored structure-directing agents. Chemical Communications, 2018, 54, 2220-2223.	2.2	31
16	Polarized olefins as enabling (co)catalysts for the polymerization of Î ³ -butyrolactone. Polymer Chemistry, 2018, 9, 3674-3683.	1.9	50
17	The Lewis Pair Polymerization of Lactones Using Metal Halides and N-Heterocyclic Olefins: Theoretical Insights. Molecules, 2018, 23, 432.	1.7	27
18	Base Catalysts for Organopolymerization. RSC Polymer Chemistry Series, 2018, , 121-197.	0.1	2

Stefan Naumann

#	Article	IF	CITATIONS
19	Protected N-heterocyclic carbenes as latent organocatalysts for the low-temperature curing of anhydride-hardened epoxy resins. European Polymer Journal, 2017, 95, 766-774.	2.6	10
20	<i>N</i> -Heterocyclic Olefin-Based (Co)polymerization of a Challenging Monomer: Homopolymerization of ω-Pentadecalactone and Its Copolymers with γ-Butyrolactone, δ-Valerolactone, and ε-Caprolactone. Macromolecules, 2017, 50, 8406-8416.	2.2	76
21	N-Heterocyclic olefins as initiators for the polymerization of (meth)acrylic monomers: a combined experimental and theoretical approach. Polymer Chemistry, 2017, 8, 5803-5812.	1.9	26
22	In Situ Copolymerization of Lactams for Melt Spinning. Macromolecular Materials and Engineering, 2016, 301, 423-428.	1.7	8
23	Application of imidazolinium salts and N-heterocyclic olefins for the synthesis of anionic and neutral tungsten imido alkylidene complexes. Chemical Communications, 2016, 52, 6099-6102.	2.2	38
24	Nâ€Heterocyclic carbenes for metalâ€free polymerization catalysis: an update. Polymer International, 2016, 65, 16-27.	1.6	55
25	Dual Catalysis Based on N-Heterocyclic Olefins for the Copolymerization of Lactones: High Performance and Tunable Selectivity. Macromolecules, 2016, 49, 8869-8878.	2.2	50
26	Highly Polarized Alkenes as Organocatalysts for the Polymerization of Lactones and Trimethylene Carbonate. ACS Macro Letters, 2016, 5, 134-138.	2.3	76
27	Latent CO ₂ â€Protected Nâ€Heterocyclic Carbeneâ€Based Singleâ€Component Systemâ€Derived Epoxy/Glass Fiber Composites. Macromolecular Materials and Engineering, 2015, 300, 937-943.	1.7	8
28	Convenient preparation of high molecular weight poly(dimethylsiloxane) using thermally latent NHC-catalysis: a structure-activity correlation. Beilstein Journal of Organic Chemistry, 2015, 11, 2261-2266.	1.3	5
29	N-Heterocyclic carbenes as organocatalysts for polymerizations: trends and frontiers. Polymer Chemistry, 2015, 6, 3185-3200.	1.9	118
30	Dual Catalysis for Selective Ring-Opening Polymerization of Lactones: Evolution toward Simplicity. Journal of the American Chemical Society, 2015, 137, 14439-14445.	6.6	118
31	Nâ€Heterocyclic Olefins as Organocatalysts for Polymerization: Preparation of Wellâ€Defined Poly(propylene oxide). Angewandte Chemie - International Edition, 2015, 54, 9550-9554.	7.2	105
32	Latent and Delayed Action Polymerization Systems. Macromolecular Rapid Communications, 2014, 35, 682-701.	2.0	81
33	Air Stable and Latent Single-Component Curing of Epoxy/Anhydride Resins Catalyzed by Thermally Liberated <i>N</i> -Heterocyclic Carbenes. Macromolecules, 2014, 47, 4548-4556.	2.2	42
34	Liberation of N-heterocyclic carbenes (NHCs) from thermally labile progenitors: protected NHCs as versatile tools in organo- and polymerization catalysis. Catalysis Science and Technology, 2014, 4, 2466-2479.	2.1	101
35	Protected N-heterocyclic carbenes as latent pre-catalysts for the polymerization of ε-caprolactone. Polymer Chemistry, 2013, 4, 4172.	1.9	67
36	Anionic Ring-Opening Homo- and Copolymerization of Lactams by Latent, Protected N-Heterocyclic Carbenes for the Preparation of PA 12 and PA 6/12. Macromolecules, 2013, 46, 8426-8433.	2.2	40

#	Article	IF	CITATIONS
37	Polymerization of methyl methacrylate by latent pre-catalysts based on CO2-protected N-heterocyclic carbenes. Polymer Chemistry, 2013, 4, 2731.	1.9	51
38	Polymerization of ε-Caprolactam by Latent Precatalysts Based on Protected N-Heterocyclic Carbenes. ACS Macro Letters, 2013, 2, 609-612.	2.3	50
39	Regioselective Cyclopolymerization of 1,7-Octadiynes. Macromolecules, 2011, 44, 8380-8387.	2.2	29