Elizabeth M Baggs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8145397/publications.pdf Version: 2024-02-01

FUZABETH M BACCS

#	Article	IF	CITATIONS
1	Toward greater sustainability: how investing in soil health may enhance maize productivity in Southern Africa. Renewable Agriculture and Food Systems, 2022, 37, 166-177.	0.8	2
2	Sources of nitrous oxide and the fate of mineral nitrogen in subarctic permafrost peat soils. Biogeosciences, 2022, 19, 2683-2698.	1.3	4
3	Role of microbial communities in conferring resistance and resilience of soil carbon and nitrogen cycling following contrasting stresses. European Journal of Soil Biology, 2021, 104, 103308.	1.4	5
4	Do soil depth and plant community composition interact to modify the resistance and resilience of grassland ecosystem functioning to drought?. Ecology and Evolution, 2021, 11, 11960-11973.	0.8	5
5	Genotypic variation in maize (<i>Zea mays</i>) influences rates of soil organic matter mineralization and gross nitrification. New Phytologist, 2021, 231, 2015-2028.	3.5	16
6	Identification of barley genetic regions influencing plant–microbe interactions and carbon cycling in soil. Plant and Soil, 2021, 468, 165-182.	1.8	11
7	Evidence of a plant genetic basis for maize roots impacting soil organic matter mineralization. Soil Biology and Biochemistry, 2021, 161, 108402.	4.2	5
8	Is soluble protein mineralisation and protease activity in soil regulated by supply or demand?. Soil Biology and Biochemistry, 2020, 150, 108007.	4.2	22
9	A footprint of plant eco-geographic adaptation on the composition of the barley rhizosphere bacterial microbiota. Scientific Reports, 2020, 10, 12916.	1.6	48
10	Do plants use root-derived proteases to promote the uptake of soil organic nitrogen?. Plant and Soil, 2020, 456, 355-367.	1.8	21
11	Closing maize yield gaps in sub-Saharan Africa will boost soil N2O emissions. Current Opinion in Environmental Sustainability, 2020, 47, 95-105.	3.1	40
12	Mitigation of nitrous oxide emissions in the context of nitrogen loss reduction from agroecosystems: managing hot spots and hot moments. Current Opinion in Environmental Sustainability, 2020, 47, 46-53.	3.1	35
13	Drought decreases incorporation of recent plant photosynthate into soil food webs regardless of their trophic complexity. Global Change Biology, 2019, 25, 3549-3561.	4.2	37
14	Ryegrass root and shoot residues differentially affect short-term priming of soil organic matter and net soil C-balance. European Journal of Soil Biology, 2019, 93, 103096.	1.4	11
15	Relationships between plant traits, soil properties and carbon fluxes differ between monocultures and mixed communities in temperate grassland. Journal of Ecology, 2019, 107, 1704-1719.	1.9	56
16	Drought soil legacy overrides maternal effects on plant growth. Functional Ecology, 2019, 33, 1400-1410.	1.7	25
17	Resilience of soil functions to transient and persistent stresses is improved more by residue incorporation than the activity of earthworms. Applied Soil Ecology, 2019, 139, 10-14.	2.1	3
18	Using plant, microbe, and soil fauna traits to improve the predictive power of biogeochemical models. Methods in Ecology and Evolution, 2019, 10, 146-157.	2.2	41

ELIZABETH M BAGGS

#	Article	IF	CITATIONS
19	Variable response of nirK and nirS containing denitrifier communities to long-term pH manipulation and cultivation. FEMS Microbiology Letters, 2018, 365, .	0.7	40
20	Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. ISME Journal, 2018, 12, 1794-1805.	4.4	210
21	Fungal diversity regulates plant-soil feedbacks in temperate grassland. Science Advances, 2018, 4, eaau4578.	4.7	161
22	Methodological bias associated with soluble protein recovery from soil. Scientific Reports, 2018, 8, 11186.	1.6	16
23	Compound driven differences in N2 and N2O emission from soil; the role of substrate use efficiency and the microbial community. Soil Biology and Biochemistry, 2017, 106, 90-98.	4.2	49
24	Nitrogen availability alters rhizosphere processes mediating soil organic matter mineralisation. Plant and Soil, 2017, 417, 499-510.	1.8	41
25	Combined effects of rhizodeposit C and crop residues on SOM priming, residue mineralization and N supply in soil. Soil Biology and Biochemistry, 2017, 113, 35-44.	4.2	29
26	"Hot spots―of N and C impact nitric oxide, nitrous oxide and nitrogen gas emissions from a UK grassland soil. Geoderma, 2017, 305, 336-345.	2.3	28
27	Complex controls on nitrous oxide flux across a large-elevation gradient in the tropical Peruvian Andes. Biogeosciences, 2017, 14, 5077-5097.	1.3	4
28	Residue-C effects on denitrification vary with soil depth. Soil Biology and Biochemistry, 2016, 103, 365-375.	4.2	9
29	Does canopy nitrogen uptake enhance carbon sequestration by trees?. Global Change Biology, 2016, 22, 875-888.	4.2	45
30	Barley genotype influences stabilization of rhizodeposition-derived CÂand soil organic matter mineralization. Soil Biology and Biochemistry, 2016, 95, 60-69.	4.2	63
31	Rhizosphere priming can promote mobilisation of N-rich compounds from soil organic matter. Soil Biology and Biochemistry, 2015, 81, 236-243.	4.2	125
32	Substrate Induced Denitrification over or under Estimates Shifts in Soil N2/N2O Ratios. PLoS ONE, 2014, 9, e108144.	1.1	30
33	Char Amendments Impact Soil Nitrous Oxide Production during Ammonia Oxidation. Soil Science Society of America Journal, 2014, 78, 1656-1660.	1.2	15
34	Nitrous oxide emissions from soils: how well do we understand the processes and their controls?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130122.	1.8	1,788
35	Evidence of Microbial Regulation of Biogeochemical Cycles from a Study on Methane Flux and Land Use Change. Applied and Environmental Microbiology, 2013, 79, 4031-4040.	1.4	82
36	Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environmental Microbiology, 2013, 15, 2395-2417.	1.8	265

ELIZABETH M BAGGS

#	Article	IF	CITATIONS
37	Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1157-1168.	1.8	399
38	Soil nitrate reducing processes – drivers, mechanisms for spatial variation, and significance for nitrous oxide production. Frontiers in Microbiology, 2012, 3, 407.	1.5	174
39	How do soil emissions of N ₂ O, <scp>CH</scp> ₄ and <scp>CO</scp> ₂ from perennial bioenergy crops differ from arable annual crops?. GCB Bioenergy, 2012, 4, 408-419.	2.5	113
40	Nitrous oxide production in soil isolates of nitrateâ€ammonifying bacteria. Environmental Microbiology Reports, 2012, 4, 66-71.	1.0	64
41	Fungal and bacterial denitrification are differently affected by long-term pH amendment and cultivation of arable soil. Soil Biology and Biochemistry, 2012, 54, 25-35.	4.2	93
42	Soil microbial sources of nitrous oxide: recent advances in knowledge, emerging challenges and future direction. Current Opinion in Environmental Sustainability, 2011, 3, 321-327.	3.1	251
43	Nitrous oxide production by the ectomycorrhizal fungi Paxillus involutus and Tylospora fibrillosa. FEMS Microbiology Letters, 2011, 316, 31-35.	0.7	50
44	Response of methanotrophic communities to afforestation and reforestation in New Zealand. ISME Journal, 2011, 5, 1832-1836.	4.4	52
45	Constraining the conditions conducive to dissimilatory nitrate reduction to ammonium in temperate arable soils. Soil Biology and Biochemistry, 2011, 43, 1607-1611.	4.2	92
46	Plant influence on nitrification. Biochemical Society Transactions, 2011, 39, 275-278.	1.6	31
47	Changing pH shifts the microbial sourceas well as the magnitude of N2O emission from soil. Biology and Fertility of Soils, 2010, 46, 793-805.	2.3	176
48	Production of NO, N2O and N2 by extracted soil bacteria, regulation by NO2âÂ^Â' and O2 concentrations. FEMS Microbiology Ecology, 2008, 65, 102-112.	1.3	141
49	Phylogeny of nitrite reductase (nirK) and nitric oxide reductase (norB) genes fromNitrosospiraspecies isolated from soil. FEMS Microbiology Letters, 2007, 266, 83-89.	0.7	69
50	Meeting the challenge of scaling up processes in the plant–soil–microbe system. Biology and Fertility of Soils, 2007, 44, 245-257.	2.3	31
51	Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway. Environmental Microbiology, 2006, 8, 214-222.	1.8	287
52	Carbon dynamics in a temperate grassland soil after 9 years exposure to elevated CO2 (Swiss FACE). Soil Biology and Biochemistry, 2005, 37, 1387-1395.	4.2	49