Vincent Vadez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8145306/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Reports, 2008, 27, 411-424.	2.8	524
2	Transpiration efficiency: new insights into an old story. Journal of Experimental Botany, 2014, 65, 6141-6153.	2.4	241
3	Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Reports, 2007, 26, 2071-2082.	2.8	240
4	THE EFFECT OF MARKET ECONOMIES ON THE WELL-BEING OF INDIGENOUS PEOPLES AND ON THEIR USE OF RENEWABLE NATURAL RESOURCES. Annual Review of Anthropology, 2005, 34, 121-138.	0.4	229
5	Root hydraulics: The forgotten side of roots in drought adaptation. Field Crops Research, 2014, 165, 15-24.	2.3	222
6	The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theoretical and Applied Genetics, 2009, 118, 729-739.	1.8	219
7	Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.) Euphytica, 2006, 146, 213-222.	0.6	218
8	Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Functional Plant Biology, 2014, 41, 1148.	1.1	214
9	Abiotic Stress Responses in Legumes: Strategies Used toÂCope with Environmental Challenges. Critical Reviews in Plant Sciences, 2015, 34, 237-280.	2.7	212
10	A conservative pattern of water use, rather than deep or profuse rooting, is critical for the terminal drought tolerance of chickpea. Journal of Experimental Botany, 2011, 62, 4239-4252.	2.4	202
11	A comprehensive resource of drought- and salinity- responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genomics, 2009, 10, 523.	1.2	199
12	Terminal drought-tolerant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit. Journal of Experimental Botany, 2010, 61, 1431-1440.	2.4	199
13	Salt sensitivity in chickpea. Plant, Cell and Environment, 2010, 33, 490-509.	2.8	194
14	Correlates of delay-discount rates: Evidence from Tsimane' Amerindians of the Bolivian rain forest. Journal of Economic Psychology, 2002, 23, 291-316.	1.1	192
15	Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theoretical and Applied Genetics, 2011, 122, 1119-1132.	1.8	188
16	Constitutive water-conserving mechanisms are correlated with the terminal drought tolerance of pearl millet [Pennisetum glaucum (L.) R. Br.]. Journal of Experimental Botany, 2010, 61, 369-377.	2.4	182
17	Chickpea genotypes contrasting for seed yield under terminal drought stress in the field differ for traits related to the control of water use. Functional Plant Biology, 2011, 38, 270.	1.1	161
18	Cultural, Practical, and Economic Value of Wild Plants: a Quantitative Study in the Bolivian Amazon. Economic Botany, 2006, 60, 62-74.	0.8	159

#	Article	IF	CITATIONS
19	LeasyScan: a novel concept combining 3D imaging and lysimetry for high-throughput phenotyping of traits controlling plant water budget. Journal of Experimental Botany, 2015, 66, 5581-5593.	2.4	155
20	Drought tolerance and yield increase of soybean resulting from improved symbiotic N2 fixation. Field Crops Research, 2007, 101, 68-71.	2.3	148
21	Large variation in salinity tolerance in chickpea is explained by differences in sensitivity at the reproductive stage. Field Crops Research, 2007, 104, 123-129.	2.3	146
22	Adaptation of grain legumes to climate change: a review. Agronomy for Sustainable Development, 2012, 32, 31-44.	2.2	145
23	Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation. Nature Communications, 2018, 9, 649.	5.8	142
24	Large genetic variation for heat tolerance in the reference collection of chickpea (Cicer arietinum L.) germplasm. Plant Genetic Resources: Characterisation and Utilisation, 2011, 9, 59-69.	0.4	134
25	Market Economy and the Loss of Folk Knowledge of Plant Uses: Estimates from the Tsimane' of the Bolivian Amazon. Current Anthropology, 2005, 46, 651-656.	0.8	131
26	Genomewide Association Studies for 50 Agronomic Traits in Peanut Using the †Reference Set' Comprising 300 Genotypes from 48 Countries of the Semi-Arid Tropics of the World. PLoS ONE, 2014, 9, e105228.	1.1	124
27	Involvement of Ureides in Nitrogen Fixation Inhibition in Soybean1. Plant Physiology, 1999, 119, 289-296.	2.3	117
28	An integrated approach to maintaining cereal productivity under climate change. Global Food Security, 2016, 8, 9-18.	4.0	110
29	Physiological traits for crop yield improvement in low N and P environments. Plant and Soil, 2002, 245, 1-15.	1.8	108
30	Evaluation of Sorghum [Sorghum bicolor (L.)] Reference Genes in Various Tissues and under Abiotic Stress Conditions for Quantitative Real-Time PCR Data Normalization. Frontiers in Plant Science, 2016, 7, 529.	1.7	108
31	Limited-transpiration response to high vapor pressure deficit in crop species. Plant Science, 2017, 260, 109-118.	1.7	108
32	Genotypic Variation in Peanut for Transpiration Response to Vapor Pressure Deficit. Crop Science, 2010, 50, 191-196.	0.8	105
33	Stay-green quantitative trait loci's effects on water extraction, transpiration efficiency and seed yield depend on recipient parent background. Functional Plant Biology, 2011, 38, 553.	1.1	103
34	Sources of tolerance to terminal drought in the chickpea (Cicer arietinum L.) minicore germplasm. Field Crops Research, 2010, 119, 322-330.	2.3	101
35	Soybean production potential in Africa. Global Food Security, 2014, 3, 31-40.	4.0	100

Root aquaporins contribute to whole plant water fluxes under drought stress in rice (<i>Oryza) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62

#	Article	IF	CITATIONS
37	Quantitative trait locus analysis and construction of consensus genetic map for drought tolerance traits based on three recombinant inbred line populations in cultivated groundnut (Arachis hypogaea) Tj ETQq1	1 01788431	4 r g& T /Overl
38	Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci. BMC Plant Biology, 2012, 12, 9.	1.6	96
39	Title is missing!. Euphytica, 1999, 106, 231-242.	0.6	94
40	CONCEPTS AND METHODS IN STUDIES MEASURING INDIVIDUAL ETHNOBOTANICAL KNOWLEDGE. Journal of Ethnobiology, 2007, 27, 182-203.	0.8	94
41	Pearl millet [Pennisetum glaucum(L.) R. Br.] consensus linkage map constructed using four RIL mapping populations and newly developed EST-SSRs. BMC Genomics, 2013, 14, 159.	1.2	94
42	Water: the most important â€~molecular' component of water stress tolerance research. Functional Plant Biology, 2013, 40, 1310.	1.1	94
43	Asparagine and ureide accumulation in nodules and shoots as feedback inhibitors of N2 fixation in soybean. Physiologia Plantarum, 2000, 110, 215-223.	2.6	93
44	Genetic engineering of chickpea (Cicer arietinum L.) with the P5CSF129A gene for osmoregulation with implications on drought tolerance. Molecular Breeding, 2009, 23, 591-606.	1.0	93
45	Using genetic mapping and genomics approaches in understanding and improving drought tolerance in pearl millet. Journal of Experimental Botany, 2011, 62, 397-408.	2.4	93
46	Small temporal differences in water uptake among varieties of pearl millet (Pennisetum glaucum (L.) R.) Tj ETQq	0 0 0 rgBT 1.8	/Oygrlock 10
47	Physical growth and nutritional status of Tsimane' Amerindian children of lowland Bolivia. American Journal of Physical Anthropology, 2005, 126, 343-351.	2.1	91
48	Assessment of ICCV 2Â×ÂJG 62 chickpea progenies shows sensitivity of reproduction to salt stress and reveals QTL for seed yield and yield components. Molecular Breeding, 2012, 30, 9-21.	1.0	90
49	II.1.5 Phenotyping pearl millet for adaptation to drought. Frontiers in Physiology, 2012, 3, 386.	1.3	89
50	Predictors of C-reactive protein in Tsimane' 2 to 15 year-olds in lowland Bolivia. American Journal of Physical Anthropology, 2005, 128, 906-913.	2.1	88
51	Peanut genotypic variation in transpiration efficiency and decreased transpiration during progressive soil drying. Field Crops Research, 2009, 114, 280-285.	2.3	88
52	Salinity tolerance and ion accumulation in chickpea (Cicer arietinum L.) subjected to salt stress. Plant and Soil, 2013, 365, 347-361.	1.8	88
53	Knowledge and Consumption of Wild Plants: A comparative study in two Tsimane' villages in the Bolivian Amazon. Ethnobotany Research and Applications, 0, 3, 201.	0.3	88
54	Accelerating genetic gains in legumes for the development of prosperous smallholder agriculture: integrating genomics, phenotyping, systems modelling and agronomy. Journal of Experimental Botany, 2018, 69, 3293-3312.	2.4	87

#	Article	IF	CITATIONS
55	Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress. BMC Plant Biology, 2011, 11, 70.	1.6	86
56	Brief Communication: Does Integration to the Market Threaten Agricultural Diversity? Panel and Cross-Sectional Data From a Horticultural-Foraging Society in the Bolivian Amazon. Human Ecology, 2004, 32, 635-646.	0.7	84
57	The future of grain legumes in cropping systems. Crop and Pasture Science, 2012, 63, 501.	0.7	83
58	Economic Development and Local Ecological Knowledge: A Deadlock? Quantitative Research from a Native Amazonian Society. Human Ecology, 2007, 35, 371-377.	0.7	82
59	Yield, transpiration efficiency, and water-use variations and their interrelationships in the sorghum reference collection. Crop and Pasture Science, 2011, 62, 645.	0.7	82
60	Local financial benefits of rain forests: comparative evidence from Amerindian societies in Bolivia and Honduras. Ecological Economics, 2002, 40, 397-409.	2.9	81
61	Ethnobotanical Knowledge Shared Widely Among Tsimane' Amerindians, Bolivia. Science, 2003, 299, 1707-1707.	6.0	78
62	Crop science experiments designed to inform crop modeling. Agricultural and Forest Meteorology, 2013, 170, 8-18.	1.9	78
63	Root traits confer grain yield advantages under terminal drought in chickpea (Cicer arietinum L.). Field Crops Research, 2017, 201, 146-161.	2.3	78
64	Lower soil moisture threshold for transpiration decline under water deficit correlates with lower canopy conductance and higher transpiration efficiency in drought-tolerant cowpea. Functional Plant Biology, 2012, 39, 306.	1.1	77
65	Modelling the effect of plant water use traits on yield and stay-green expression in sorghum. Functional Plant Biology, 2014, 41, 1019.	1.1	76
66	The effect of wealth and real income on wildlife consumption among native Amazonians in Bolivia: estimates of annual trends with longitudinal household data (2002–2006). Animal Conservation, 2010, 13, 265-274.	1.5	74
67	Assessment of Groundnut under Combined Heat and Drought Stress. Journal of Agronomy and Crop Science, 2013, 199, 1-11.	1.7	74
68	Assessment of transpiration efficiency in peanut (<i>Arachis hypogaea</i> L.) under drought using a lysimetric system. Plant Biology, 2009, 11, 124-130.	1.8	73
69	Variation in transpiration efficiency and its related traits in a groundnut (Arachis hypogaea L.) mapping population. Field Crops Research, 2007, 103, 189-197.	2.3	72
70	Transgenic peanut overexpressing the DREB1A transcription factor has higher yields under drought stress. Molecular Breeding, 2014, 33, 327-340.	1.0	72
71	Identification of Soybean Genotypes with N ₂ Fixation Tolerance to Water Deficits. Crop Science, 2000, 40, 1803-1809.	0.8	70
72	Salt sensitivity in chickpea (<scp><i>C</i></scp> <i>icer arietinum</i> â€ <scp>L</scp> .): ions in reproductive tissues and yield components in contrasting genotypes. Plant, Cell and Environment, 2015, 38, 1565-1577.	2.8	69

#	Article	IF	CITATIONS
73	Review: An integrated framework for crop adaptation to dry environments: Responses to transient and terminal drought. Plant Science, 2016, 253, 58-67.	1.7	69
74	Leaf ureide degradation and N2 fixation tolerance to water deficit in soybean1. Journal of Experimental Botany, 2001, 52, 153-159.	2.4	67
75	Two key genomic regions harbour QTLs for salinity tolerance in ICCV 2 × JG 11 derived chickpea (Cicer)	Ţį ETQq1	1 0.78431 67
76	Feedback regulation of symbiotic N2 fixation under drought stress. Agronomy for Sustainable Development, 2001, 21, 621-626.	0.8	67
77	DREB1A overexpression in transgenic chickpea alters key traits influencing plant water budget across water regimes. Plant Cell Reports, 2015, 34, 199-210.	2.8	66
78	Differential antioxidative responses in transgenic peanut bear no relationship to their superior transpiration efficiency under drought stress. Journal of Plant Physiology, 2009, 166, 1207-1217.	1.6	65
79	Genome-wide identification and characterization of the aquaporin gene family in Sorghum bicolor (L.). Plant Gene, 2015, 1, 18-28.	1.4	65
80	Drought stress characterization of post-rainy season (rabi) sorghum in India. Field Crops Research, 2013, 141, 38-46.	2.3	64
81	Groundnut (Arachis hypogaea) genotypes tolerant to intermittent drought maintain a high harvest index and have small leaf canopy under stress. Functional Plant Biology, 2011, 38, 1016.	1.1	63
82	Effects of individual and combined heat and drought stress during seed filling on the oxidative metabolism and yield of chickpea (Cicer arietinum) genotypes differing in heat and drought tolerance. Crop and Pasture Science, 2017, 68, 823.	0.7	61
83	Meat prices influence the consumption of wildlife by the Tsimane' Amerindians of Bolivia. Oryx, 2002, 36, .	0.5	60
84	Restriction of transpiration rate under high vapour pressure deficit and nonâ€limiting water conditions is important for terminal drought tolerance in cowpea. Plant Biology, 2013, 15, 304-316.	1.8	60
85	Shoot traits and their relevance in terminal drought tolerance of chickpea (Cicer arietinum L.). Field Crops Research, 2016, 197, 10-27.	2.3	59
86	Plant vigour QTLs co-map with an earlier reported QTL hotspot for drought tolerance while water saving QTLs map in other regions of the chickpea genome. BMC Plant Biology, 2018, 18, 29.	1.6	59
87	Water saving traits co-map with a major terminal drought tolerance quantitative trait locus in pearl millet [Pennisetum glaucum (L.) R. Br.]. Molecular Breeding, 2012, 30, 1337-1353.	1.0	57
88	Patience in a Foraging-Horticultural Society: A Test of Competing Hypotheses. Journal of Anthropological Research, 2004, 60, 179-202.	0.1	56
89	Chickpea Genotypes Contrasting for Vigor and Canopy Conductance Also Differ in Their Dependence on Different Water Transport Pathways. Frontiers in Plant Science, 2017, 8, 1663.	1.7	55
90	Utilization of the acetylene reduction assay to screen for tolerance of symbiotic N2 fixation to limiting P nutrition in common bean. Physiologia Plantarum, 1997, 99, 227-232.	2.6	54

#	Article	IF	CITATIONS
91	Higher flower and seed number leads to higher yield under water stress conditions imposed during reproduction in chickpea. Functional Plant Biology, 2015, 42, 162.	1.1	54
92	Cloning and validation of reference genes for normalization of gene expression studies in pearl millet [Pennisetum glaucum (L.) R. Br.] by quantitative real-time PCR. Plant Gene, 2015, 1, 35-42.	1.4	53
93	The effect of tetraploidization of wild Arachis on leaf morphology and other drought-related traits. Environmental and Experimental Botany, 2012, 84, 17-24.	2.0	52
94	Human capital, wealth, and nutrition in the Bolivian Amazon. Economics and Human Biology, 2005, 3, 139-162.	0.7	51
95	Non-market Returns to Traditional Human Capital: Nutritional Status and Traditional Knowledge in a Native Amazonian Society. Journal of Development Studies, 2008, 44, 217-232.	1.2	51
96	Physical stature of adult Tsimane' Amerindians, Bolivian Amazon in the 20th century. Economics and Human Biology, 2006, 4, 184-205.	0.7	50
97	Why Do Subsistence-Level People Join the Market Economy? Testing Hypotheses of Push and Pull Determinants in Bolivian Amazonia. Journal of Anthropological Research, 2005, 61, 157-178.	0.1	49
98	Evaluating indices of traditional ecological knowledge: a methodological contribution. Journal of Ethnobiology and Ethnomedicine, 2006, 2, 21.	1.1	49
99	<i>DREB1A</i> promotes root development in deep soil layers and increases water extraction under water stress in groundnut. Plant Biology, 2013, 15, 45-52.	1.8	49
100	Multiple Resistant and Nutritionally Dense Germplasm Identified from Mini Core Collection in Peanut. Crop Science, 2014, 54, 679-693.	0.8	49
101	Large number of flowers and tertiary branches, and higher reproductive success increase yields under salt stress in chickpea. European Journal of Agronomy, 2012, 41, 42-51.	1.9	48
102	Selection of intermittent drought tolerant lines across years and locations in the reference collection of groundnut (Arachis hypogaea L.). Field Crops Research, 2012, 126, 189-199.	2.3	46
103	Response to early drought stress and identification of QTLs controlling biomass production under drought in pearl millet. PLoS ONE, 2018, 13, e0201635.	1.1	46
104	Modelling possible benefits of root related traits to enhance terminal drought adaptation of chickpea. Field Crops Research, 2012, 137, 108-115.	2.3	45
105	CGIAR modeling approaches for resourceâ€constrained scenarios: I. Accelerating crop breeding for a changing climate. Crop Science, 2020, 60, 547-567.	0.8	45
106	Cash Cropping, Farm Technologies, and Deforestation: What are the Connections? A Model with Empirical Data from the Bolivian Amazon. Human Organization, 2008, 67, 384-396.	0.2	44
107	Relationships Between Transpiration Efficiency and Its Surrogate Traits in the rd29A:DREB1A Transgenic Lines of Groundnut. Journal of Agronomy and Crop Science, 2011, 197, 272-283.	1.7	44
108	Water uptake dynamics under progressive drought stress in diverse accessions of the OryzaSNP panel of rice (Oryza sativa). Functional Plant Biology, 2012, 39, 402.	1.1	44

#	Article	IF	CITATIONS
109	Do Markets Worsen Economic Inequalities? Kuznets in the Bush. Human Ecology, 2004, 32, 339-364.	0.7	42

110 Consistent Variation Across Soil Types in Salinity Resistance of a Diverse Range of Chickpea (Cicer) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

111	Although drought intensity increases aflatoxin contamination, drought tolerance does not lead to less aflatoxin contamination. Field Crops Research, 2014, 156, 103-110.	2.3	42
112	Signaling by consumption in a native Amazonian societyâ [~] †. Evolution and Human Behavior, 2007, 28, 124-134.	1.4	41
113	Variation in carbon isotope discrimination and its relationship with harvest index in the reference collection of chickpea germplasm. Functional Plant Biology, 2013, 40, 1350.	1.1	39
114	Analysis of chickpea yield gap and water-limited potential yield in Iran. Field Crops Research, 2016, 185, 21-30.	2.3	39
115	Genotypic variation in soil water use and root distribution and their implications for drought tolerance in chickpea. Functional Plant Biology, 2017, 44, 235.	1.1	39
116	Genotypic variability among peanut (Arachis hypogea L.) in sensitivity of nitrogen fixation to soil drying. Plant and Soil, 2010, 330, 139-148.	1.8	38
117	Unscrambling confounded effects of sowing date trials to screen for crop adaptation to high temperature. Field Crops Research, 2015, 177, 1-8.	2.3	38
118	Characterization of the main chickpea cropping systems in India using a yield gap analysis approach. Field Crops Research, 2018, 223, 93-104.	2.3	38
119	Maize, sorghum, and pearl millet have highly contrasting species strategies to adapt to water stress and climate change-like conditions. Plant Science, 2020, 295, 110297.	1.7	38
120	Does a terminal drought tolerance QTL contribute to differences in ROS scavenging enzymes and photosynthetic pigments in pearl millet exposed to drought?. Environmental and Experimental Botany, 2011, 71, 99-106.	2.0	37
121	High transpiration efficiency increases pod yield under intermittent drought in dry and hot atmospheric conditions but less so under wetter and cooler conditions in groundnut (Arachis) Tj ETQq1 1 0.7843	81 4. æBT /	Oværlock 1
122	Ureide degradation pathways in intact soybean leaves1. Journal of Experimental Botany, 2000, 51, 1459-1465.	2.4	36
123	The Tsimane' Amazonian Panel Study (TAPS): Nine years (2002–2010) of annual data available to the public. Economics and Human Biology, 2015, 19, 51-61.	0.7	36
124	Role of Modelling in International Crop Research: Overview and Some Case Studies. Agronomy, 2018, 8, 291.	1.3	36
125	Income inequality and adult nutritional status: Anthropometric evidence from a pre-industrial society in the Bolivian Amazon. Social Science and Medicine, 2005, 61, 907-919.	1.8	35
126	The origins of monetary income inequality. Evolution and Human Behavior, 2007, 28, 37-47.	1.4	35

#	Article	IF	CITATIONS
127	Water extraction under terminal drought explains the genotypic differences in yield, not the anti-oxidant changes in leaves of pearl millet (Pennisetum glaucum). Functional Plant Biology, 2013, 40, 44.	1.1	35
128	Molecular Genetics and Breeding of Grain Legume Crops for the Semi-Arid Tropics. , 2007, , 207-241.		35
129	Manganese application alleviates the water deficitâ€induced decline of N2fixation. Plant, Cell and Environment, 2000, 23, 497-505.	2.8	34
130	Does village inequality in modern income harm the psyche? Anger, fear, sadness, and alcohol consumption in a pre-industrial society. Social Science and Medicine, 2006, 63, 359-372.	1.8	34
131	Salt Stress Delayed Flowering and Reduced Reproductive Success of Chickpea (<i>Cicer arietinum</i>) Tj ETQq1 Crop Science, 2016, 202, 125-138.	l 0.78431 1.7	.4 rgBT /Ove 34
132	Leaf ureide degradation and N(2) fixation tolerance to water deficit in soybean. Journal of Experimental Botany, 2001, 52, 153-9.	2.4	33
133	The extent of variation in salinity tolerance of the minicore collection of finger millet (Eleusine) Tj ETQq1 1 0.7843	814 rgBT / 1.7	Oyerlock 10
134	High level of natural variation in a groundnut (<i>Arachis hypogaea</i> L.) germplasm collection assayed by selected informative SSR markers. Plant Breeding, 2009, 128, 486-494.	1.0	31
135	Virtual Plants Need Water Too: Functional-Structural Root System Models in the Context of Drought Tolerance Breeding. Frontiers in Plant Science, 2017, 8, 1577.	1.7	30
136	Why do mothers favor girls and fathers, boys?. Human Nature, 2006, 17, 169-189.	0.8	29
137	The Pay-Offs to Sociability. Human Nature, 2009, 20, 431-446.	0.8	29
138	Identification of quantitative trait loci for yield and yield related traits in groundnut (Arachis) Tj ETQq0 0 0 rgBT /C)verlock 1 0.6	0
139	Overcoming Phosphorus Deficiency in West African Pearl Millet and Sorghum Production Systems: Promising Options for Crop Improvement. Frontiers in Plant Science, 2016, 7, 1389.	1.7	29
140	Relevance of limited-transpiration trait for lentil (Lens culinaris Medik.) in South Asia. Field Crops Research, 2017, 209, 96-107.	2.3	29
141	Crop simulation analysis of phenological adaptation of chickpea to different latitudes of India. Field Crops Research, 2013, 146, 1-9.	2.3	28
142	Quantitative trait loci (QTLs) for water use and crop production traits co-locate with major QTL for tolerance to water deficit in a fine-mapping population of pearl millet (Pennisetum glaucum L. R.Br.). Theoretical and Applied Genetics, 2018, 131, 1509-1529.	1.8	28
143	Improved Genetic Map Identified Major QTLs for Drought Tolerance- and Iron Deficiency Tolerance-Related Traits in Groundnut. Genes, 2021, 12, 37.	1.0	28
144	Mini Core Collection as a Resource to Identify New Sources of Variation. Crop Science, 2013, 53,	0.8	27

2506-2517.

#	Article	IF	CITATIONS
145	SSM-iCrop2: A simple model for diverse crop species over large areas. Agricultural Systems, 2020, 182, 102855.	3.2	27
146	Ethnobotanical Skills and Clearance of Tropical Rain Forest for Agriculture: A Case Study in the Lowlands of Bolivia. Ambio, 2007, 36, 406-408.	2.8	26
147	Component traits of plant water use are modulated by vapour pressure deficit in pearl millet (Pennisetum glaucum (L.) R.Br.). Functional Plant Biology, 2016, 43, 423.	1.1	26
148	Using boundary line analysis to assess the on-farm crop yield gap of wheat. Field Crops Research, 2018, 225, 64-73.	2.3	26
149	Isolation and functional characterization of three abiotic stress-inducible (Apx, Dhn and Hsc70) promoters from pearl millet (Pennisetum glaucum L.). Molecular Biology Reports, 2019, 46, 6039-6052.	1.0	26
150	Future food self-sufficiency in Iran: A model-based analysis. Global Food Security, 2020, 24, 100351.	4.0	26
151	Language skills and earnings: Evidence from a pre-industrial economy in the Bolivian Amazon. Economics of Education Review, 2007, 26, 349-360.	0.7	25
152	An update and perspectives on the use of promoters in plant genetic engineering. Journal of Biosciences, 2020, 45, 1.	0.5	25
153	Are Bradyrhizobium japonicum stable during a long stay in soil?. Plant and Soil, 2002, 245, 315-326.	1.8	24
154	The relation between forest clearance and household income among native Amazonians: Results from the Tsimane' Amazonian panel study, Bolivia. Ecological Economics, 2009, 68, 1864-1871.	2.9	24
155	A minute P application contributes to a better establishment of pearl millet (Pennisetum glaucum (L.)) Tj ETQq1	1 0,7843 2.6	14 rgBT /Ove
156	Environmental Response and Genomic Regions Correlated with Rice Root Growth and Yield under Drought in the OryzaSNP Panel across Multiple Study Systems. PLoS ONE, 2015, 10, e0124127.	1.1	24
157	The Role of Community and Individuals in the Formation of Social Capital. Human Ecology, 2007, 35, 709-721.	0.7	23
158	Individual Wealth Rank, Community Wealth Inequality, and Self-Reported Adult Poor Health: A Test of Hypotheses with Panel Data (2002-2006) from Native Amazonians, Bolivia. Medical Anthropology Quarterly, 2010, 24, 522-548.	0.7	23
159	Testing pearl millet and cowpea intercropping systems under high temperatures. Field Crops Research, 2018, 217, 150-166.	2.3	23
160	Crossâ€ŧolerance for drought, heat and salinity stresses in chickpea (<i>Cicer arietinum</i> L.). Journal of Agronomy and Crop Science, 2020, 206, 405-419.	1.7	23
161	Variation for temporary waterlogging response within the mini core pigeonpea germplasm. Journal of Agricultural Science, 2012, 150, 357-364.	0.6	22
162	Quantitative trait loci associated with constitutive traits control water use in pearl millet [<i>Pennisetum glaucum</i> (L.) R. Br.]. Plant Biology, 2015, 17, 1073-1084.	1.8	22

#	Article	IF	CITATIONS
163	Mapping Water Stress Incidence and Intensity, Optimal Plant Populations, and Cultivar Duration for African Groundnut Productivity Enhancement. Frontiers in Plant Science, 2017, 8, 432.	1.7	22
164	Comparative growth and symbiotic performance of four Acacia mangium provenances from Papua New Guinea in response to the supply of phosphorus at various concentrations. Biology and Fertility of Soils, 1995, 19, 60-64.	2.3	21
165	Adaptation Responses to Early Drought Stress of West Africa Sorghum Varieties. Agronomy, 2021, 11, 443.	1.3	21
166	Ethnobotanical Knowledge and Crop Diversity in Swidden Fields: A Study in a Native Amazonian Society. Human Ecology, 2008, 36, 569-580.	0.7	20
167	Variation among Cowpea Genotypes in Sensitivity of Transpiration Rate and Symbiotic Nitrogen Fixation to Soil Drying. Crop Science, 2015, 55, 2270-2275.	0.8	20
168	An ensemble machine learning approach for determination of the optimum sampling time for evapotranspiration assessment from high-throughput phenotyping data. Computers and Electronics in Agriculture, 2021, 182, 105992.	3.7	20
169	Physiological traits for crop yield improvement in low N and P environments. , 2002, , 9-23.		20
170	Ureide Accumulation in Response to Mn Nutrition by Eight Soybean Genotypes with N Fixation Tolerance to Soil Drying. Crop Science, 2003, 43, 592.	0.8	20
171	Ureide degradation pathways in intact soybean leaves. Journal of Experimental Botany, 2000, 51, 1459-65.	2.4	20
172	Personal and Group Incentives to Invest in Prosocial Behavior: A Study in the Bolivian Amazon. Journal of Anthropological Research, 2006, 62, 81-101.	0.1	19
173	Large variation for salinity tolerance in the core collection of foxtail millet (Setaria italica (L.) P.) Tj ETQq1 1 0.78	34314.rgB ⁻ 0.7	Г /Qyerlock 1
174	Molecular cloning, characterization and expression analysis of a heat shock protein 10 (Hsp10) from Pennisetum glaucum (L.), a C4 cereal plant from the semi-arid tropics. Molecular Biology Reports, 2016, 43, 861-870.	1.0	19
175	Geospatial assessment for crop physiological and management improvements with examples using the simple simulation model. Crop Science, 2020, 60, 700-708.	0.8	19
176	Modeling plant production at country level as affected by availability and productivity of land and water. Agricultural Systems, 2020, 183, 102859.	3.2	19
177	Do smiles have a face value? Panel evidence from Amazonian Indians. Journal of Economic Psychology, 2005, 26, 469-490.	1.1	18
178	Aquaporins are main contributors to root hydraulic conductivity in pearl millet [Pennisetum glaucum (L) R. Br.]. PLoS ONE, 2020, 15, e0233481.	1.1	18
179	Environmental characterization and yield gap analysis to tackle genotype-by-environment-by-management interactions and map region-specific agronomic and breeding targets in groundnut. Field Crops Research, 2021, 267, 108160.	2.3	18
180	Developmental changes in the relationship between leptin and adiposity among Tsimané children and adolescents. American Journal of Human Biology, 2008, 20, 392-398.	0.8	17

#	Article	IF	CITATIONS
181	Opportunities for exploiting variations in haulm fodder traits of intermittent drought tolerant lines in a reference collection of groundnut (Arachis hypogaea L.). Field Crops Research, 2012, 126, 200-206.	2.3	17
182	Schooling's contribution to social capital: study from a native Amazonian society in Bolivia. Comparative Education, 2007, 43, 137-163.	1.8	16
183	Water use, transpiration efficiency and yield in cowpea (Vigna unguiculata) and peanut (Arachis) Tj ETQq1 1 0.7	84314 rgB 0.7	T /Overlock
184	Variation in Droughtâ€Tolerance Components and their Interrelationships in the Minicore Collection of Finger Millet Germplasm. Crop Science, 2016, 56, 1914-1926.	0.8	16
185	Automated discretization of â€~transpiration restriction to increasing VPD' features from outdoors high-throughput phenotyping data. Plant Methods, 2020, 16, 140.	1.9	16
186	Sensitivity of N ₂ Fixation Traits in Soybean Cultivar Jackson to Manganese. Crop Science, 2002, 42, 791-796.	0.8	15
187	Transgenic Strategies for Improved Drought Tolerance in Legumes of Semi-Arid Tropics. Journal of Crop Improvement, 2009, 24, 92-111.	0.9	15
188	Molecular cloning and expression analysis of Aquaporin genes in pearl millet [Pennisetum glaucum (L) R. Br.] genotypes contrasting in their transpiration response to high vapour pressure deficits. Plant Science, 2017, 265, 167-176.	1.7	15
189	The Role of Ethnobotanical Skills and Agricultural Labor in Forest Clearance: Evidence from the Bolivian Amazon. Ambio, 2011, 40, 310-321.	2.8	14
190	Livestock water productivity: feed resourcing, feeding and coupled feed-water resource data bases. Animal Production Science, 2014, 54, 1584.	0.6	14
191	How Well do Foragers Protect Food Consumption? Panel Evidence from a Native Amazonian Society in Bolivia. Human Ecology, 2007, 35, 723-732.	0.7	13
192	Tolerant pearl millet (Pennisetum glaucum (L.) R. Br.) varieties to low soil P have higher transpiration efficiency and lower flowering delay than sensitive ones. Plant and Soil, 2015, 389, 89-108.	1.8	13
193	Pearl millet (Pennisetum glaucum) contrasting for the transpiration response to vapour pressure deficit also differ in their dependence on the symplastic and apoplastic water transport pathways. Functional Plant Biology, 2018, 45, 719.	1.1	13
194	Functional Dissection of the Chickpea (Cicer arietinum L.) Stay-Green Phenotype Associated with Molecular Variation at an Ortholog of Mendel's I Gene for Cotyledon Color: Implications for Crop Production and Carotenoid Biofortification. International Journal of Molecular Sciences, 2019, 20, 5562.	1.8	13
195	Transpiration efficiency: insights from comparisons of C4 cereal species. Journal of Experimental Botany, 2021, 72, 5221-5234.	2.4	13
196	Pearl Millet Aquaporin Gene PgPIP2;6 Improves Abiotic Stress Tolerance in Transgenic Tobacco. Frontiers in Plant Science, 2022, 13, 820996.	1.7	13
197	Nutritional status and spousal empowerment among native Amazonians. Social Science and Medicine, 2006, 63, 1517-1530.	1.8	12
198	Seed Number and 100‧eed Weight of Pearl Millet (<i>Pennisetum glaucum L.)</i> Respond Differently to Low Soil Moisture in Genotypes Contrasting for Drought Tolerance. Journal of Agronomy and Crop Science, 2014, 200, 119-131.	1.7	12

#	Article	IF	CITATIONS
199	Physiological and genetic control of transpiration efficiency in African rice, <i>Oryza glaberrima</i> Steud. Journal of Experimental Botany, 2022, 73, 5279-5293.	2.4	12
200	The Uneven Reach of Decentralization: A Case Study among Indigenous Peoples in the Bolivian Amazon. International Political Science Review, 2010, 31, 229-243.	2.0	10
201	PHOSPHORUS COATING ON PEARL MILLET SEED IN LOW P ALFISOL IMPROVES PLANT ESTABLISHMENT AND INCREASES STOVER MORE THAN SEED YIELD. Experimental Agriculture, 2010, 46, 457-469.	0.4	10
202	Changes in timing of water uptake and phenology favours yield gain in terminal water stressed chickpea AtDREB1A transgenics. Functional Plant Biology, 2015, 42, 84.	1.1	10
203	Introgression of staygreen QLT's for concomitant improvement of food and fodder traits in Sorghum bicolor. Field Crops Research, 2015, 180, 228-237.	2.3	10
204	Annotation of Trait Loci on Integrated Genetic Maps of Arachis Species. , 2016, , 163-207.		10
205	Determination of coefficient defining leaf area development in different genotypes, plant types and planting densities in peanut (Arachis hypogeae L.). Field Crops Research, 2016, 199, 42-51.	2.3	10
206	Transpiration Response and Growth in Pearl Millet Parental Lines and Hybrids Bred for Contrasting Rainfall Environments. Frontiers in Plant Science, 2017, 8, 1846.	1.7	10
207	Transpiration difference under high evaporative demand in chickpea (<i>Cicer arietinum</i> L.) may be explained by differences in the water transport pathway in the root cylinder. Plant Biology, 2020, 22, 769-780.	1.8	10
208	Can intercropping be an adaptation to drought? A modelâ€based analysis for pearl millet–cowpea. Journal of Agronomy and Crop Science, 2022, 208, 910-927.	1.7	10
209	Sensitivity of N Fixation Traits in Soybean Cultivar Jackson to Manganese. Crop Science, 2002, 42, 791.	0.8	10
210	Improving pearl millet for drought tolerance – Retrospect and prospects. Indian Journal of Genetics and Plant Breeding, 2017, 77, 464.	0.2	10
211	Does the Future Affect the Present? The Effects of Future Weather on the Current Collection of Planted Crops and Wildlife in a Native Amazonian Society of Bolivia. Human Ecology, 2009, 37, 613-628.	0.7	9
212	SpaTemHTP: A Data Analysis Pipeline for Efficient Processing and Utilization of Temporal High-Throughput Phenotyping Data. Frontiers in Plant Science, 2020, 11, 552509.	1.7	9
213	Sorghum. , 2021, , 196-221.		9
214	Molecular Cloning and Differential Expression of Cytosolic Class I Small Hsp Gene Family in Pennisetum glaucum (L.). Applied Biochemistry and Biotechnology, 2015, 176, 598-612.	1.4	8
215	Functional characterization of the promoter of pearl millet heat shock protein 10 (PgHsp10) in response to abiotic stresses in transgenic tobacco plants. International Journal of Biological Macromolecules, 2020, 156, 103-110.	3.6	8
216	Human Body-mass Index (Weight in kg/stature in m2) as a Useful Proxy to Assess the Relation between Income and Wildlife Consumption in Poor Rural Societies. Biodiversity and Conservation, 2006, 15, 4495-4506.	1.2	7

#	Article	IF	CITATIONS
217	Plant Biomass Productivity Under Abiotic Stresses in SAT Agriculture. , 0, , .		7
218	Variation in drought-tolerance components and their interrelationships in the core collection of foxtail millet (Setaria italica) germplasm. Crop and Pasture Science, 2016, 67, 834.	0.7	7
219	Functional characterization of late embryogenesis abundant genes and promoters in pearl millet () Tj ETQq1 1 0.	784314 r 2.6	gBT_/Overloc
220	Estimation of genetic components of variation for salt tolerance in chickpea using the generation mean analysis. Euphytica, 2011, 182, 73.	0.6	5
221	Developing drought tolerant crops: hopes and challenges in an exciting journey. Functional Plant Biology, 2014, 41, v.	1.1	5
222	Plant Survival of Drought During Establishment: An Interspecific Comparison of Five Grain Legumes. Crop Science, 2015, 55, 1264-1273.	0.8	5
223	Measurement of transpiration restriction under high vapor pressure deficit for sorghum mapping population parents. Plant Physiology Reports, 2019, 24, 74-85.	0.7	5
224	Pearl Millet. SpringerBriefs in Environmental Science, 2017, , 73-83.	0.3	5
225	Optimizing Crop Water Use for Drought and Climate Change Adaptation Requires a Multi-Scale Approach. Frontiers in Plant Science, 2022, 13, 824720.	1.7	5
226	Physiological trait networks enhance understanding of crop growth and water use in contrasting environments. Plant, Cell and Environment, 2022, 45, 2554-2572.	2.8	5
227	Geospatial Assessment for Crop Physiological and Management Improvements with Examples Using the Simple Simulation Model. Crop Science, 2019, .	0.8	4
228	Utilization of the acetylene reduction assay to screen for tolerance of symbiotic N2 fixation to limiting P nutrition in common bean. Physiologia Plantarum, 1997, 99, 227-232.	2.6	4
229	Understanding the Relationship between Water Availability and Biosilica Accumulation in Selected C4 Crop Leaves: An Experimental Approach. Plants, 2022, 11, 1019.	1.6	4
230	How process-based modeling can help plant breeding deal with G x E x M interactions. Field Crops Research, 2022, 283, 108554.	2.3	4
231	Ureide degradation pathways in intact soybean leaves 1. Journal of Experimental Botany, 2000, 51, 1459-1465.	2.4	3
232	Chickpea. , 2021, , 342-358.		3
233	Physiology of Growth, Development and Yield. , 2020, , 127-155.		3
234	Chickpea. SpringerBriefs in Environmental Science, 2017, , 35-45.	0.3	2

#	Article	IF	CITATIONS
235	Strategies to Enhance Drought Tolerance in Peanut and Molecular Markers for Crop Improvement. Sustainable Development and Biodiversity, 2019, , 131-143.	1.4	2
236	Pearl Millet Mapping Population Parents: Performance and Selection Under Salt Stress Across Environments Varying in Evaporative Demand. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2019, 89, 201-211.	0.4	2
237	Leaf ureide degradation and N 2 fixation tolerance to water deficit in soybean 1. Journal of Experimental Botany, 2001, 52, 153-159.	2.4	2
238	Quantifying Leaf Area Development Parameters for Cowpea [Vigna unguiculata (L.) Walpers]. Crop Science, 2016, 56, 3209-3217.	0.8	1
239	Got All the Answers! What Were the Questions? Avoiding the Risk of "Phenomics―Slipping into a Technology Spree. Concepts and Strategies in Plant Sciences, 2021, , 223-241.	0.6	1
240	Transgenic strategies for improved drought tolerance in legumes of semi-arid tropics. , 2010, , 261-277.		1
241	Exploiting genetic variation from unadapted germplasm—An example from improvement of sorghum in Ethiopia. Plants People Planet, 2022, 4, 523-536.	1.6	1
242	Relying on the numerous advantages of grain legumes for more productive and nutritive agriculture in the semi-arid tropics. Sécheresse, 2013, 24, 314-321.	0.1	0
243	Water-Use Efficiency. Agronomy, 2016, , .	0.2	0
244	Multi-Scale Time Series Analysis Of Evapotranspiration For High-Throughput Phenotyping Frequency Optimization. , 2020, , .		0
245	Ammonium fertilization increases pearl millet yield by promoting early root growth, higher tillering, and water use during grain filling in a low PÂSahelian soil. Journal of Plant Nutrition and Soil Science, 2021, 184, 123-131.	1.1	0
246	Water-Use Efficiency. Agronomy, 0, , 267-276.	0.2	0
247	High-Throughput Phenotyping Methods for Economic Traits and Designer Plant Types as Tools to Support Modern Breeding Efforts. , 2020, , 231-249.		0