Chamila Gunasekara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8145232/publications.pdf

Version: 2024-02-01

48 papers

1,521 citations

³⁶¹⁴¹³
20
h-index

315739 38 g-index

48 all docs

48 docs citations

48 times ranked

1057 citing authors

#	Article	IF	CITATIONS
1	A review on soil stabilisation of unsealed road pavements from an Australian perspective. Road Materials and Pavement Design, 2023, 24, 1005-1049.	4.0	2
2	Hydraulic characteristics of stabilised expansive subgrade soils in road pavements. International Journal of Pavement Engineering, 2022, 23, 3129-3146.	4.4	6
3	Long term creep and shrinkage of nano silica modified high volume fly ash concrete. Journal of Sustainable Cement-Based Materials, 2022, 11, 202-222.	3.1	8
4	Comprehensive review on sustainable fiber reinforced concrete incorporating recycled textile waste. Journal of Sustainable Cement-Based Materials, 2022, 11, 28-42.	3.1	31
5	Engineering properties of waste-based alkali activated concrete brick containing low calcium fly ash and rice husk ash: A comparison with traditional Portland cement concrete brick. Journal of Building Engineering, 2022, 46, 103810.	3.4	10
6	Sustainable High-Performance Hydraulic Concrete. Sustainability, 2022, 14, 695.	3.2	1
7	Modeling of hydration products and strength development for high-volume fly ash binders. Construction and Building Materials, 2022, 320, 126228.	7.2	13
8	Improvement of heavy metal removal from urban runoff using modified pervious concrete. Science of the Total Environment, 2022, 815, 152936.	8.0	28
9	Mix design of fly ash based alkali activated concrete. , 2022, , 41-65.		1
10	Engineering properties of very high volume fly ash composite. Sustainable and Resilient Infrastructure, 2022, 7, 775-788.	2.8	0
11	Environmental evaluation and economic analysis of fly ash-rice husk ash blended alkali-activated bricks. Environmental Impact Assessment Review, 2022, 95, 106784.	9.2	10
12	Investigation of the reaction mechanism of blended fly ash and rice husk ash alkali-activated binders. Archives of Civil and Mechanical Engineering, 2022, 22, 1.	3.8	8
13	Microstructural characterisation of cementitious composite incorporating polymeric fibre: A comprehensive review. Construction and Building Materials, 2022, 335, 127497.	7.2	19
14	Upcycled Polypropylene and Polytrimethylene Terephthalate Carpet Waste in Reinforcing Cementitious Composites. ACI Materials Journal, 2022, , .	0.2	0
15	A comprehensive review on geotechnical properties of alkali activated binder treated expansive soil. Journal of Cleaner Production, 2022, 363, 132488.	9.3	21
16	Life cycle assessment of alkali-activated concretes under marine exposure in an Australian context. Environmental Impact Assessment Review, 2022, 96, 106813.	9.2	9
17	Geopolymer synthesis using low-grade clays. Construction and Building Materials, 2021, 268, 121066.	7.2	18
18	Alkali activated slag concrete incorporating recycled aggregate concrete: Long term performance and sustainability aspect. Construction and Building Materials, 2021, 271, 121512.	7.2	42

#	Article	IF	CITATIONS
19	Effect of Curing Temperature on the Alkali Activation of German Brown Coal Fly Ash. RILEM Bookseries, 2021, , 69-77.	0.4	2
20	Low-Grade Clay as an Alkali-Activated Material. Applied Sciences (Switzerland), 2021, 11, 1648.	2.5	2
21	Novel Analytical Method for Mix Design and Performance Prediction of High Calcium Fly Ash Geopolymer Concrete. Polymers, 2021, 13, 900.	4.5	21
22	Engineering Performance of Concrete Incorporated with Recycled High-Density Polyethylene (HDPE)—A Systematic Review. Polymers, 2021, 13, 1885.	4.5	16
23	A critical review on drying shrinkage mitigation strategies in cement-based materials. Journal of Building Engineering, 2021, 38, 102210.	3.4	45
24	Alkali-Activated Slag Concrete with Recycled Aggregate: Long-Term Performance. Journal of Materials in Civil Engineering, 2021, 33, .	2.9	5
25	Systematic Review on Alkali-Activated Binders Blended with Rice Husk Ash. Journal of Materials in Civil Engineering, 2021, 33, .	2.9	15
26	Life cycle assessment and cost analysis of fly ash–rice husk ash blended alkali-activated concrete. Journal of Environmental Management, 2021, 295, 113140.	7.8	52
27	Mechanism of Enzyme Stabilization for Expansive Soils Using Mechanical and Microstructural Investigation. International Journal of Geomechanics, 2021, 21, .	2.7	12
28	Long term mechanical performance of nano-engineered high volume fly ash concrete. Journal of Building Engineering, 2021, 43, 103168.	3.4	16
29	Damage Assessment of Geopolymer Aggregate Concrete Using Numerical Modeling. Lecture Notes in Civil Engineering, 2021, , 31-46.	0.4	0
30	Compressive strength and microstructure evolution of low calcium brown coal fly ash-based geopolymer. Journal of Sustainable Cement-Based Materials, 2020, 9, 17-34.	3.1	29
31	Performance of high volume fly ash concrete incorporating additives: A systematic literature review. Construction and Building Materials, 2020, 258, 120606.	7.2	110
32	Feasibility of Developing Sustainable Concrete Using Environmentally Friendly Coarse Aggregate. Applied Sciences (Switzerland), 2020, 10, 5207.	2.5	7
33	Creep, shrinkage and permeation characteristics of geopolymer aggregate concrete: long-term performance. Archives of Civil and Mechanical Engineering, 2020, 20, 1.	3.8	18
34	Sustainable criterion selection framework for green building materials – An optimisation based study of fly-ash Geopolymer concrete. Sustainable Materials and Technologies, 2020, 25, e00178.	3.3	55
35	Microstructure and strength development of quaternary blend high-volume fly ash concrete. Journal of Materials Science, 2020, 55, 6441-6456.	3.7	23
36	Optimization of Enzyme-Based Soil Stabilization. Journal of Materials in Civil Engineering, 2020, 32, .	2.9	29

#	Article	IF	CITATION
37	Effect of nano-silica addition into high volume fly ash–hydrated lime blended concrete. Construction and Building Materials, 2020, 253, 119205.	7.2	58
38	Reactivity and Performance of Alkali-Activated Yallourn Brown Coal Ash. ACI Materials Journal, 2020, , .	0.2	1
39	Effect of Curing Conditions on Microstructure and Pore-Structure of Brown Coal Fly Ash Geopolymers. Applied Sciences (Switzerland), 2019, 9, 3138.	2.5	11
40	Chloride induced corrosion in different fly ash based geopolymer concretes. Construction and Building Materials, 2019, 200, 502-513.	7.2	96
41	Design of fly ash geopolymer concrete mix proportions using Multivariate Adaptive Regression Spline model. Construction and Building Materials, 2018, 166, 472-481.	7.2	89
42	Greenhouse gas emissions of different fly ash based geopolymer concretes in building construction. Journal of Cleaner Production, 2018, 204, 399-408.	9.3	103
43	Engineering Properties of Geopolymer Aggregate Concrete. Journal of Materials in Civil Engineering, 2018, 30, .	2.9	28
44	Comparison of long term performance between alkali activated slag and fly ash geopolymer concretes. Construction and Building Materials, 2017, 143, 272-279.	7.2	148
45	Suitability of Brown Coal Fly Ash for Geopolymer Production. Journal of Materials in Civil Engineering, 2017, 29, .	2.9	29
46	Long-Term Mechanical Properties of Different Fly Ash Geopolymers. ACI Structural Journal, 2017, 114, .	0.2	36
47	Long term permeation properties of different fly ash geopolymer concretes. Construction and Building Materials, 2016, 124, 352-362.	7.2	110
48	Zeta potential, gel formation and compressive strength of low calcium fly ash geopolymers.	7.2	128