Qingan A Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8144714/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diagonal inflow effect on the wake characteristics of a horizontal axis wind turbine with Gaussian model and field measurements. Energy, 2022, 238, 121692.	4.5	5
2	Numerical study of aerodynamic characteristics on a straight-bladed vertical axis wind turbine with bionic blades. Energy, 2022, 239, 122453.	4.5	13
3	Investigation of aerodynamic forces and flow field of an H-type vertical axis wind turbine based on bionic airfoil. Energy, 2022, 242, 122999.	4.5	8
4	Review of Study on the Coupled Dynamic Performance of Floating Offshore Wind Turbines. Energies, 2022, 15, 3970.	1.6	3
5	Effect of the bionic blade on the flow field of a straight-bladed vertical axis wind turbine. Energy, 2022, 258, 124834.	4.5	5
6	Study on the Optimal Configuration of a Wind-Solar-Battery-Fuel Cell System Based on a Regional Power Supply. IEEE Access, 2021, 9, 47056-47068.	2.6	15
7	Wind Tunnel Experiments and Numerical Study on Performance Characteristics of an H-type Vertical Axis Wind Turbine in the Spanwise Direction. Journal of Thermal Science, 2021, 30, 758-771.	0.9	4
8	Visualization of aerodynamic forces and flow field on a straight-bladed vertical axis wind turbine by wind tunnel experiments and panel method. Energy, 2021, 225, 120274.	4.5	9
9	Wind tunnel and numerical study of a floating offshore wind turbine based on the cyclic pitch control. Renewable Energy, 2021, 172, 453-464.	4.3	15
10	Prediction of power generation of two 30ÂkW Horizontal Axis Wind Turbines with Gaussian model. Energy, 2021, 231, 121075.	4.5	7
11	Investigations of flow field around two-dimensional simplified models with wind tunnel experiments. Renewable Energy, 2020, 152, 270-282.	4.3	1
12	Experimental investigations of airfoil surface flow of a horizontal axis wind turbine with LDV measurements. Energy, 2020, 191, 116558.	4.5	6
13	Laser Doppler Velocimetry (LDV) measurements of airfoil surface flow on a Horizontal Axis Wind Turbine in boundary layer. Energy, 2019, 183, 341-357.	4.5	11
14	Experimental and theoretical investigations on the effect of a single leading-edge protuberance on airfoil performance. Physics of Fluids, 2019, 31, .	1.6	26
15	Model Predictive Control Using Multi-Step Prediction Model for Electrical Yaw System of Horizontal-Axis Wind Turbines. IEEE Transactions on Sustainable Energy, 2019, 10, 2084-2093.	5.9	49
16	Wind tunnel experimental investigation of flow field around two-dimensional single hill models. Renewable Energy, 2019, 136, 1107-1118.	4.3	12
17	Effect of Blade Pitch Angle on the Aerodynamic Characteristics of a Straight-bladed Vertical Axis Wind Turbine Based on Experiments and Simulations. Energies, 2018, 11, 1514.	1.6	27
18	Investigation of wake characteristic of a 30†kW rated power Horizontal Axis Wind Turbine with wake model and field measurement. Applied Energy, 2018, 225, 1190-1204.	5.1	16

Qingan A Li

#	Article	IF	CITATIONS
19	Study on stall behavior of a straight-bladed vertical axis wind turbine with numerical and experimental investigations. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 164, 1-12.	1.7	50

Investigation of wake effects on a Horizontal Axis Wind Turbine in field experiments (Part I:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702 T $\frac{4.5}{23}$

21	Experimental investigation of the cyclic pitch control on a horizontal axis wind turbine in diagonal inflow wind condition. Energy, 2017, 134, 269-278.	4.5	14
22	Effect of rotor aspect ratio and solidity on a straight-bladed vertical axis wind turbine in three-dimensional analysis by the panel method. Energy, 2017, 121, 1-9.	4.5	79
23	Investigation of wake characteristics of a Horizontal Axis Wind Turbine in vertical axis direction with field experiments. Energy, 2017, 141, 262-272.	4.5	12
24	Experimental investigation of flow over two-dimensional multiple hill models. Science of the Total Environment, 2017, 609, 1075-1084.	3.9	14
25	Investigation of power performance and wake on a straight-bladed vertical axis wind turbine with field experiments. Energy, 2017, 141, 1113-1123.	4.5	17
26	Periodic and aperiodic flow patterns around an airfoil with leading-edge protuberances. Physics of Fluids, 2017, 29, 115110.	1.6	51
27	Experimental investigations of boundary layer impact on the airfoil aerodynamic forces of Horizontal Axis Wind Turbine in turbulent inflows. Energy, 2017, 135, 799-810.	4.5	14
28	Experimental investigation of load fluctuation on horizontal axis wind turbine for extreme wind direction change. Journal of Fluid Science and Technology, 2017, 12, JFST0005-JFST0005.	0.2	6
29	Numerical Investigation of the Tip Vortex of a Straight-Bladed Vertical Axis Wind Turbine with Double-Blades. Energies, 2017, 10, 1721.	1.6	27
30	Experiment and Simulation Effects of Cyclic Pitch Control on Performance of Horizontal Axis Wind Turbine. International Journal of Renewable Energy Development, 2017, 6, 119-125.	1.2	3
31	Effect of solidity on aerodynamic forces around straight-bladed vertical axis wind turbine by wind tunnel experiments (depending on number of blades). Renewable Energy, 2016, 96, 928-939.	4.3	81
32	Wind tunnel and numerical study of a straight-bladed vertical axis wind turbine in three-dimensional analysis (Part I: For predicting aerodynamic loads and performance). Energy, 2016, 106, 443-452.	4.5	76
33	Wind tunnel and numerical study of a straight-bladed Vertical Axis Wind Turbine in three-dimensional analysis (Part II: For predicting flow field and performance). Energy, 2016, 104, 295-307.	4.5	53
34	Effect of turbulent inflows on airfoil performance for a Horizontal Axis Wind Turbine at low Reynolds numbers (Part II: Dynamic pressure measurement). Energy, 2016, 112, 574-587.	4.5	25
35	Experimental and numerical investigation of the effect of turbulent inflow on a Horizontal Axis Wind Turbine (Part I: Power performance). Energy, 2016, 113, 713-722.	4.5	63
36	Experimental and numerical investigation of the effect of turbulent inflow on a Horizontal Axis Wind Turbine (part II: Wake characteristics). Energy, 2016, 113, 1304-1315.	4.5	64

Qingan A Li

#	Article	IF	CITATIONS
37	Effect of turbulence on power performance of a Horizontal Axis Wind Turbine in yawed and no-yawed flow conditions. Energy, 2016, 109, 703-711.	4.5	42
38	Visualization of the flow field and aerodynamic force on a Horizontal Axis Wind Turbine in turbulent inflows. Energy, 2016, 111, 57-67.	4.5	22
39	The influence of flow field and aerodynamic forces on a straight-bladed vertical axis wind turbine. Energy, 2016, 111, 260-271.	4.5	39
40	Effect of turbulent inflows on airfoil performance for a Horizontal Axis Wind Turbine at low Reynolds numbers (part I: Static pressure measurement). Energy, 2016, 111, 701-712.	4.5	30
41	Study on power performance for straight-bladed vertical axis wind turbine by field and wind tunnel test. Renewable Energy, 2016, 90, 291-300.	4.3	109
42	Fundamental study on aerodynamic force of floating offshore wind turbine with cyclic pitch mechanism. Energy, 2016, 99, 20-31.	4.5	46
43	Measurement of the flow field around straight-bladed vertical axis wind turbine. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 151, 70-78.	1.7	39
44	Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine. Energy, 2015, 90, 784-795.	4.5	157
45	Analysis of aerodynamic load on straight-bladed vertical axis wind turbine. Journal of Thermal Science, 2014, 23, 315-324.	0.9	31
46	Study on flow around straight-bladed vertical axis wind turbine under low tip speed ratio. Journal of Fluid Science and Technology, 2014, 9, JFST0051-JFST0051.	0.2	5
47	Effect of blade number on flow around straight-bladed vertical axis wind turbine. Transactions of the ISME (in Japanese). 2014. 80. FE0223-FE0223.	0.1	4