
Carlos Mauricio Fontes Vieira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8144445/publications.pdf

Version: 2024-02-01

Carlos Mauricio Fontes

#	Article	IF	CITATIONS
1	On the production of fired clay bricks from waste materials: A critical update. Construction and Building Materials, 2014, 68, 599-610.	3.2	154
2	Materials for Production of High and Ultra-High Performance Concrete: Review and Perspective of Possible Novel Materials. Materials, 2021, 14, 4304.	1.3	86
3	Rheological and the Fresh State Properties of Alkali-Activated Mortars by Blast Furnace Slag. Materials, 2021, 14, 2069.	1.3	83
4	Use of glass polishing waste in the development of ecological ceramic roof tiles by the geopolymerization process. International Journal of Applied Ceramic Technology, 2020, 17, 2649-2658.	1.1	82
5	Eco-friendly mortars with addition of ornamental stone waste - A mathematical model approach for granulometric optimization. Journal of Cleaner Production, 2020, 248, 119283.	4.6	67
6	Ballistic Efficiency of an Individual Epoxy Composite Reinforced with Sisal Fibers in Multilayered Armor. Materials Research, 2015, 18, 55-62.	0.6	61
7	Circular economy and durability in geopolymers ceramics pieces obtained from glass polishing waste. International Journal of Applied Ceramic Technology, 2021, 18, 1891-1900.	1.1	61
8	Reaction mechanisms of alkali-activated materials. Revista IBRACON De Estruturas E Materiais, 2021, 14,	0.3	54
9	Environmental Durability of Soil-Cement Block Incorporated with Ornamental Stone Waste. Materials Science Forum, 0, 798-799, 548-553.	0.3	51
10	Comparative tensile strength analysis between epoxy composites reinforced with curaua fiber and glass fiber. Journal of Materials Research and Technology, 2018, 7, 561-565.	2.6	42
11	Tensile strength of polyester composites reinforced with PALF. Journal of Materials Research and Technology, 2017, 6, 401-405.	2.6	40
12	Recycling of electric arc furnace dust into red ceramic. Journal of Materials Research and Technology, 2013, 2, 88-92.	2.6	38
13	Bending test in epoxy composites reinforced with continuous and aligned PALF fibers. Journal of Materials Research and Technology, 2017, 6, 411-416.	2.6	32
14	Development of ceramic paver with ornamental rock waste. Journal of Materials Research and Technology, 2019, 8, 599-608.	2.6	31
15	Production of Synthetic Ornamental Marble as a Marble Waste Added Polyester Composite. Materials Science Forum, 0, 775-776, 341-345.	0.3	27
16	Reinforcement of Polyester with Renewable Ramie Fibers. Materials Research, 2017, 20, 51-59.	0.6	26
17	Thermogravimetric characterization of polyester matrix composites reinforced with eucalyptus fibers. Journal of Materials Research and Technology, 2017, 6, 396-400.	2.6	25
18	Development of Epoxy Matrix Artificial Stone Incorporated with Sintering Residue from Steelmaking Industry. Materials Research, 2015, 18, 235-239.	0.6	23

CARLOS MAURICIO FONTES

#	Article	IF	CITATIONS
19	Novel Artificial Ornamental Stone Developed with Quarry Waste in Epoxy Composite. Materials Research, 2018, 21, .	0.6	19
20	Evaluation of the application of macrophyte biomass Salvinia auriculata Aublet in red ceramics. Journal of Environmental Management, 2020, 275, 111253.	3.8	18
21	Incorporation of in Natura and Calcined Red Muds into Clay Ceramic. Materials Research, 2015, 18, 279-282.	0.6	17
22	Influence of the Granite Waste into a Clayey Ceramic Body for Rustic Wall Tiles. Materials Science Forum, 0, 727-728, 1057-1062.	0.3	12
23	Reformulation of a Kaolinitic Clay Ceramic Body with Sand and Flux Clay for Roofing Tiles Production. Materials Science Forum, 0, 727-728, 965-970.	0.3	11
24	Simplex Network Modeling for Press-Molded Ceramic Bodies Incorporated with Granite Waste. Materials Science Forum, 0, 727-728, 619-624.	0.3	11
25	Fabrication of Artificial Stone from Marble Residue by Resin Transfer Molding. Materials Science Forum, 0, 775-776, 336-340.	0.3	11
26	Incorporation of unserviceable tire waste in red ceramic. Journal of Materials Research and Technology, 2019, 8, 6041-6050.	2.6	11
27	Recycling of Steel Sludge into Red Ceramic. Materials Science Forum, 2006, 530-531, 544-549.	0.3	10
28	Fluorescent Lamp Glass Waste Incorporation into Clay Ceramic: A Perfect Solution. Jom, 2016, 68, 2425-2434.	0.9	10
29	Incorporation of mold flux waste in red ceramic. Journal of Materials Research and Technology, 2019, 8, 5707-5715.	2.6	10
30	Engineered Stone Produced with Class Packaging Waste, Quartz Powder, and Epoxy Resin. Sustainability, 2022, 14, 7227.	1.6	10
31	Effect of the Particle Size of the Grog on the Properties and Microstructure of Bricks. Materials Science Forum, 2006, 530-531, 438-443.	0.3	9
32	Properties of Clay Ceramic Incorporated with Red Mud. Materials Science Forum, 0, 798-799, 509-513.	0.3	9
33	Characterization of Fluorescent Lamp Glass Waste Powders. Materials Science Forum, 0, 727-728, 1579-1584.	0.3	8
34	Use of Ash from the Incineration of Elephant Grass (<i>Pennisetum purpureums shaum</i>) into Clayey Ceramic. Materials Science Forum, 0, 727-728, 993-998.	0.3	8
35	Firing Behavior of the Clay Fraction of a Natural Kaolinitic Clay: Are They Different?. Materials Research, 2019, 22, .	0.6	8
36	Influence of the Sand Addition on the Processing, Properties and Microstructure of Red Ceramic. Materials Science Forum, 2010, 660-661, 801-806.	0.3	7

CARLOS MAURICIO FONTES

#	Article	IF	CITATIONS
37	Study of a Clayey Soil Used in the Fabrication of Red Ceramics in Campos Dos Goytacazes, Brazil. Materials Science Forum, 0, 798-799, 15-20.	0.3	7
38	Evaluation of Solid Waste From H2S Removal Process in Natural Gas Treatment Incorporated Into Red Ceramic. Materials Research, 2019, 22, .	0.6	6
39	Microstructural Evaluation of Clayey Ceramic Incorporated with Powder Waste from the Sintering Plant of a Steel-Making Industry. Materials Science Forum, 0, 727-728, 951-956.	0.3	5
40	Characterization of a Red Mud and a Clay Body for Ceramic Fabrication. Materials Science Forum, 0, 798-799, 514-519.	0.3	5
41	Characterization of a Limestone Powder Residue for Recycling as a Concrete Block Incorporation. Materials Science Forum, 0, 798-799, 3-8.	0.3	5
42	Incorporation of Granite Waste into Vitrified Ceramic Tiles. Materials Science Forum, 2006, 530-531, 467-472.	0.3	4
43	Effect of the Particle Size of an Ash from Sugarcane Bagasse in the Properties of Red Ceramics. Materials Science Forum, 2006, 530-531, 538-543.	0.3	4
44	Microstructural Analysis of Clay Ceramic Added with Argillite and Grog. Materials Science Forum, 2014, 798-799, 219-223.	0.3	4
45	Clay Ceramic Incorporated with Granite Waste Obtained from Diamond Multi-Wire Sawing Technology. Materials Science Forum, 0, 775-776, 648-652.	0.3	4
46	Relevance of Ornamental Stone Residues in the Manufacture of Concrete Blocks for Structural Masonry. Materials Science Forum, 2014, 798-799, 638-643.	0.3	4
47	Microstuctural Evaluation of a Clay Ceramic Incorporated with Granite Rejects from Stone Sawing Using Diamond Wire. Materials Science Forum, 2014, 798-799, 251-256.	0.3	4
48	Effect of Banana Fiber in the Properties of Clayey Ceramic. Materials Science Forum, 2014, 798-799, 229-234.	0.3	4
49	Characterization of Granite Waste for Incorporation in Red Ceramic. Materials Science Forum, 2005, 498-499, 728-733.	0.3	3
50	Mineral Constituents of a Clay from Campos dos Goytacazes, Brazil. Materials Science Forum, 0, 591-593, 477-481.	0.3	3
51	The Role of Particle Shape on the Sintering of Clay Based Ceramics. Materials Science Forum, 0, 660-661, 88-93.	0.3	3
52	Characterization of Blast Furnace Sludge for Clayey Ceramic Fabrication. Materials Science Forum, 2012, 727-728, 715-720.	0.3	3
53	Development of Ceramics Based on Clays from Different Regions in the State of Rio de Janeiro, Brazil. Materials Science Forum, 0, 805, 530-535.	0.3	3
54	Characterization of a Granite Waste for Clay Ceramic Addition. Materials Science Forum, 0, 775-776, 699-704.	0.3	3

CARLOS MAURICIO FONTES

#	Article	IF	CITATIONS
55	Improved clay ceramics incorporated with steelmaking sinter particulates. Journal of Materials Research and Technology, 2018, 7, 612-616.	2.6	3
56	Evaluation of the Effect of the Incorporation of Blends of Fuel and Fluxing Wastes in Red Clay Ceramics. Materials Research, 2019, 22, .	0.6	3
57	Incorporation of sludge from effluent treatment plant of an industrial laundry into heavy clay ceramics. Journal of Building Engineering, 2022, 47, 103451.	1.6	3
58	Influence of the Granulometry of Organic Matter Ashes from Municipal Solid Waste on the Properties of Vitrified Ceramics. Materials Science Forum, 2005, 498-499, 552-557.	0.3	2
59	Firing Behaviour of a Clayey Ceramic Body for Rustic Floor Tiles. Materials Science Forum, 2012, 727-728, 959-964.	0.3	2
60	Microstructural Analysis of Clay Ceramic Added with Blast Furnace Sludge. Materials Science Forum, 0, 775-776, 718-723.	0.3	2
61	Influence of Firing Temperature on the Behavior of Clay Ceramics Incorporated with Elephant Grass Ash. Materials Science Forum, 2014, 798-799, 526-531.	0.3	2
62	Characterization of a Water Clearing Treatment Residue and Its Application as Clay Ceramic Addition. Materials Science Forum, 0, 775-776, 642-647.	0.3	2
63	Properties of High Temperature Sintered Clay Ceramic Added with Multi-Wire Sawn Granite Waste. Materials Science Forum, 0, 775-776, 69-74.	0.3	2
64	Characterization of Granulometric Fractions of Ash from Boiler Burnt Sugarcane Bagasse. Materials Science Forum, 2008, 591-593, 471-476.	0.3	1
65	Use of Nepheline-Syenite, Talc and Kaolinitic Clay to Obtain Ceramic Tiles. Materials Science Forum, 0, 660-661, 675-680.	0.3	1
66	Use of Steel Slag into Clayey Ceramics. Materials Science Forum, 2010, 660-661, 686-691.	0.3	1
67	Factorial Design for Experimental Planning of Sludge Waste Incorporated Cement Pavements. Materials Science Forum, 0, 727-728, 1717-1722.	0.3	1
68	Characterization of a Quartzite Residue and its Application in Red Clay Ceramics. Materials Science Forum, 0, 805, 541-546.	0.3	1
69	Incorporation of Global Blast Furnace Sludge into Clayey Ceramic. Materials Science Forum, 2014, 798-799, 487-491.	0.3	1
70	Technical Feasibility of Using Lightweight Concrete with Expanded Polystyrene in Civil Construction. Materials Science Forum, 2014, 798-799, 347-352.	0.3	1
71	Method to Separate Nanometric Particles of Clays. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 665-672.	0.1	0
72	Use of Eucalyptus Firewood Ash into Clayey Ceramic. Materials Science Forum, 2010, 660-661, 860-865.	0.3	0

#	Article	IF	CITATIONS
73	Activation Energy for the Sintering of Clay Based Ceramic Powder. Materials Science Forum, 2010, 660-661, 813-818.	0.3	0
74	Incorporation of Petroleum Coke into Red Ceramic. Materials Science Forum, 2010, 660-661, 681-685.	0.3	0
75	Characterization of Clays Used in the Fabrication of Traditional Brazilian Ceramic Pans: Culture and Technique. Materials Science Forum, 2010, 660-661, 718-723.	0.3	0
76	Recycling of Benefited Blast Furnace Sludge into Red Clay Ceramic. Materials Science Forum, 0, 775-776, 607-612.	0.3	0
77	Evaluation of Co and CO ₂ Emitted in the Firing of Clay Ceramics Incorporated with Elephant Grass Ash. Materials Science Forum, 2014, 798-799, 532-536.	0.3	0
78	Use of Ash from Coffee Wood into Clayey Ceramic. Materials Science Forum, 2014, 775-776, 712-717.	0.3	0