
Mikhail M Savitski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8144329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mass-spectrometry-based draft of the human proteome. Nature, 2014, 509, 582-587.	13.7	1,697
2	Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature, 2011, 478, 529-533.	13.7	1,354
3	Tracking cancer drugs in living cells by thermal profiling of the proteome. Science, 2014, 346, 1255784.	6.0	812
4	Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Analytical and Bioanalytical Chemistry, 2012, 404, 939-965.	1.9	695
5	Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nature Biotechnology, 2011, 29, 255-265.	9.4	597
6	Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Nature Protocols, 2015, 10, 1567-1593.	5.5	481
7	A new antibiotic selectively kills Gram-negative pathogens. Nature, 2019, 576, 459-464.	13.7	456
8	A Scalable Approach for Protein False Discovery Rate Estimation in Large Proteomic Data Sets. Molecular and Cellular Proteomics, 2015, 14, 2394-2404.	2.5	350
9	Systematic analysis of protein turnover in primary cells. Nature Communications, 2018, 9, 689.	5.8	280
10	Species-specific activity of antibacterial drug combinations. Nature, 2018, 559, 259-263.	13.7	276
11	The functional landscape of the human phosphoproteome. Nature Biotechnology, 2020, 38, 365-373.	9.4	273
12	Thermal proteome profiling monitors ligand interactions with cellular membrane proteins. Nature Methods, 2015, 12, 1129-1131.	9.0	244
13	Measuring and Managing Ratio Compression for Accurate iTRAQ/TMT Quantification. Journal of Proteome Research, 2013, 12, 3586-3598.	1.8	238
14	Ion Coalescence of Neutron Encoded TMT 10-Plex Reporter Ions. Analytical Chemistry, 2014, 86, 3594-3601.	3.2	235
15	A Dual-Mechanism Antibiotic Kills Gram-Negative Bacteria and Avoids Drug Resistance. Cell, 2020, 181, 1518-1532.e14.	13.5	202
16	Thermal profiling reveals phenylalanine hydroxylase as an off-target of panobinostat. Nature Chemical Biology, 2016, 12, 908-910.	3.9	189
17	Multiplexed Proteome Dynamics Profiling Reveals Mechanisms Controlling Protein Homeostasis. Cell, 2018, 173, 260-274.e25.	13.5	186
18	De Novo Peptide Sequencing and Identification with Precision Mass Spectrometry. Journal of Proteome Research. 2007. 6. 114-123.	1.8	185

2

MIKHAIL M SAVITSKI

#	Article	IF	CITATIONS
19	Pervasive Protein Thermal Stability Variation during the Cell Cycle. Cell, 2018, 173, 1495-1507.e18.	13.5	183
20	High-Resolution Enabled TMT 8-plexing. Analytical Chemistry, 2012, 84, 7188-7194.	3.2	181
21	Proteome-wide solubility and thermal stability profiling reveals distinct regulatory roles for ATP. Nature Communications, 2019, 10, 1155.	5.8	181
22	ModifiComb, a New Proteomic Tool for Mapping Substoichiometric Post-translational Modifications, Finding Novel Types of Modifications, and Fingerprinting Complex Protein Mixtures. Molecular and Cellular Proteomics, 2006, 5, 935-948.	2.5	178
23	Bioaccumulation of therapeutic drugs by human gut bacteria. Nature, 2021, 597, 533-538.	13.7	159
24	Meltome atlas—thermal proteome stability across the tree of life. Nature Methods, 2020, 17, 495-503.	9.0	152
25	Thermal proteome profiling for interrogating protein interactions. Molecular Systems Biology, 2020, 16, e9232.	3.2	150
26	Proteomics-Grade de Novo Sequencing Approach. Journal of Proteome Research, 2005, 4, 2348-2354.	1.8	147
27	Mitochondrial protein-induced stress triggers a global adaptive transcriptional programme. Nature Cell Biology, 2019, 21, 442-451.	4.6	146
28	A selective inhibitor reveals PI3Kγ dependence of TH17 cell differentiation. Nature Chemical Biology, 2012, 8, 576-582.	3.9	136
29	Thermal proteome profiling in bacteria: probing protein state <i>inÂvivo</i> . Molecular Systems Biology, 2018, 14, e8242.	3.2	130
30	Improving Protein Identification Using Complementary Fragmentation Techniques in Fourier Transform Mass Spectrometry. Molecular and Cellular Proteomics, 2005, 4, 835-845.	2.5	128
31	Hydrogen rearrangement to and from radical z fragments in electron capture dissociation of peptides. Journal of the American Society for Mass Spectrometry, 2007, 18, 113-120.	1.2	120
32	Identifying drug targets in tissues and whole blood with thermal-shift profiling. Nature Biotechnology, 2020, 38, 303-308.	9.4	111
33	Delayed Fragmentation and Optimized Isolation Width Settings for Improvement of Protein Identification and Accuracy of Isobaric Mass Tag Quantification on Orbitrap-Type Mass Spectrometers. Analytical Chemistry, 2011, 83, 8959-8967.	3.2	102
34	Structure of the mycobacterial ESX-5 type VII secretion system membrane complex by single-particle analysis. Nature Microbiology, 2017, 2, 17047.	5.9	102
35	Thermal proteome profiling: unbiased assessment of protein state through heat-induced stability changes. Proteome Science, 2016, 15, 13.	0.7	101
36	The Commonly Used PI3-Kinase Probe LY294002 Is an Inhibitor of BET Bromodomains. ACS Chemical Biology, 2014, 9, 495-502.	1.6	97

MIKHAIL M SAVITSKI

#	Article	IF	CITATIONS
37	Extent of Modifications in Human Proteome Samples and Their Effect on Dynamic Range of Analysis in Shotgun Proteomics. Molecular and Cellular Proteomics, 2006, 5, 2384-2391.	2.5	93
38	New Data Base-independent, Sequence Tag-based Scoring of Peptide MS/MS Data Validates Mowse Scores, Recovers Below Threshold Data, Singles Out Modified Peptides, and Assesses the Quality of MS/MS Techniques. Molecular and Cellular Proteomics, 2005, 4, 1180-1188.	2.5	88
39	Targeted data acquisition for improved reproducibility and robustness of proteomic mass spectrometry assays. Journal of the American Society for Mass Spectrometry, 2010, 21, 1668-1679.	1.2	83
40	Chemical Proteomics Reveals Ferrochelatase as a Common Off-target of Kinase Inhibitors. ACS Chemical Biology, 2016, 11, 1245-1254.	1.6	82
41	Nonparametric Analysis of Thermal Proteome Profiles Reveals Novel Drug-binding Proteins*. Molecular and Cellular Proteomics, 2019, 18, 2506-2515.	2.5	75
42	Liquid Chromatography at Critical Conditions:Â Comprehensive Approach to Sequence-Dependent Retention Time Prediction. Analytical Chemistry, 2006, 78, 7770-7777.	3.2	73
43	Affinity Profiling of the Cellular Kinome for the Nucleotide Cofactors ATP, ADP, and GTP. ACS Chemical Biology, 2013, 8, 599-607.	1.6	73
44	Outer membrane lipoprotein NlpI scaffolds peptidoglycan hydrolases within multiâ€enzyme complexes in <i>Escherichia coli</i> . EMBO Journal, 2020, 39, e102246.	3.5	69
45	Side-Chain Losses in Electron Capture Dissociation To Improve Peptide Identification. Analytical Chemistry, 2007, 79, 2296-2302.	3.2	68
46	The functional proteome landscape of Escherichia coli. Nature, 2020, 588, 473-478.	13.7	58
47	Impact of phosphorylation on thermal stability of proteins. Nature Methods, 2021, 18, 757-759.	9.0	58
48	Bifurcating Fragmentation Behavior of Gas-Phase Tryptic Peptide Dications in Collisional Activation. Journal of the American Society for Mass Spectrometry, 2008, 19, 1755-1763.	1.2	55
49	Immunoaffinity Enrichments Followed by Mass Spectrometric Detection for Studying Global Protein Tyrosine Phosphorylation. Journal of Proteome Research, 2008, 7, 2897-2910.	1.8	52
50	Chemoproteomics Reveals Time-Dependent Binding of Histone Deacetylase Inhibitors to Endogenous Repressor Complexes. ACS Chemical Biology, 2014, 9, 1736-1746.	1.6	52
51	Bacterial retrons encode phage-defending tripartite toxin–antitoxin systems. Nature, 2022, 609, 144-150.	13.7	52
52	Cell surface thermal proteome profiling tracks perturbations and drug targets on the plasma membrane. Nature Methods, 2021, 18, 84-91.	9.0	49
53	Leaderless secreted peptide signaling molecule alters global gene expression and increases virulence of a human bacterial pathogen. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8498-E8507.	3.3	46
54	Structure of the mycobacterial ESX-5 type VII secretion system pore complex. Science Advances, 2021, 7,	4.7	45

MIKHAIL M SAVITSKI

#	Article	IF	CITATIONS
55	Analytical Utility of Small Neutral Losses from Reduced Species in Electron Capture Dissociation Studied Using SwedECD Database. Analytical Chemistry, 2008, 80, 8089-8094.	3.2	42
56	Dendritic autophagy degrades postsynaptic proteins and is required for long-term synaptic depression in mice. Nature Communications, 2022, 13, 680.	5.8	41
57	PhosTShunter:Â A Fast and Reliable Tool to Detect Phosphorylated Peptides in Liquid Chromatography Fourier Transform Tandem Mass Spectrometry Data Sets. Journal of Proteome Research, 2006, 5, 659-668.	1.8	39
58	Global mapping of Salmonella enterica-host protein-protein interactions during infection. Cell Host and Microbe, 2021, 29, 1316-1332.e12.	5.1	39
59	Dissecting the sequence determinants for dephosphorylation by the catalytic subunits of phosphatases PP1 and PP2A. Nature Communications, 2020, 11, 3583.	5.8	38
60	Determination of the location of positive charges in gas-phase polypeptide polycations by tandem mass spectrometry. International Journal of Mass Spectrometry, 2006, 252, 204-212.	0.7	34
61	H-Score, a Mass Accuracy Driven Rescoring Approach for Improved Peptide Identification in Modification Rich Samples. Journal of Proteome Research, 2010, 9, 5511-5516.	1.8	34
62	A computational method for detection of ligand-binding proteins from dose range thermal proteome profiles. Nature Communications, 2020, 11, 5783.	5.8	34
63	On studying protein phosphorylation patterns using bottom-up LC–MS/MS: the case of human α-casein. Analyst, The, 2007, 132, 768-776.	1.7	33
64	Drug Target Identification in Tissues by Thermal Proteome Profiling. Annual Review of Pharmacology and Toxicology, 2022, 62, 465-482.	4.2	31
65	Spatiotemporal proteomics uncovers cathepsin-dependent macrophage cell death during Salmonella infection. Nature Microbiology, 2020, 5, 1119-1133.	5.9	30
66	SwedCAD, a Database of Annotated High-Mass Accuracy MS/MS Spectra of Tryptic Peptides. Journal of Proteome Research, 2007, 6, 4063-4067.	1.8	28
67	Two Dimensional Mass Mapping as a General Method of Data Representation in Comprehensive Analysis of Complex Molecular Mixtures. Analytical Chemistry, 2009, 81, 3738-3745.	3.2	26
68	<i>In Vitro</i> Neurotoxicity of PBDE-99: Immediate and Concentration-Dependent Effects on Protein Expression in Cerebral Cortex Cells. Journal of Proteome Research, 2010, 9, 1226-1235.	1.8	26
69	TRRAP is essential for regulating the accumulation of mutant and wild-type p53 in lymphoma. Blood, 2018, 131, 2789-2802.	0.6	25
70	Aggregation and disaggregation features of the human proteome. Molecular Systems Biology, 2020, 16, e9500.	3.2	25
71	Systematic Localization of Escherichia coli Membrane Proteins. MSystems, 2020, 5, .	1.7	24
72	High-throughput functional characterization of protein phosphorylation sites in yeast. Nature Biotechnology, 2022, 40, 382-390.	9.4	24

Μικηαίι Μ Savitski

#	Article	IF	CITATIONS
73	Relative Specificities of Water and Ammonia Losses from Backbone Fragments in Collision-Activated Dissociation. Journal of Proteome Research, 2007, 6, 2669-2673.	1.8	23
74	Physicochemical Properties Determining the Detection Probability of Tryptic Peptides in Fourier Transform Mass Spectrometry. A Correlation Study. Analytical Chemistry, 2004, 76, 5872-5877.	3.2	21
75	SARSâ€CoVâ€2 infection remodels the host protein thermal stability landscape. Molecular Systems Biology, 2021, 17, e10188.	3.2	17
76	lsocotoin suppresses hepatitis E virus replication through inhibition of heat shock protein 90. Antiviral Research, 2021, 185, 104997.	1.9	15
77	Shifted-basis technique improves accuracy of peak position determination in Fourier transform mass spectrometry. Journal of the American Society for Mass Spectrometry, 2004, 15, 457-461.	1.2	14
78	A genetic analysis reveals novel histone residues required for transcriptional reprogramming upon stress. Nucleic Acids Research, 2020, 48, 3455-3475.	6.5	14
79	Rtpca: an R package for differential thermal proximity coaggregation analysis. Bioinformatics, 2021, 37, 431-433.	1.8	14
80	ATP Enhances Neuronal Differentiation of PC12 Cells by Activating PKCα Interactions with Cytoskeletal Proteins. Journal of Proteome Research, 2011, 10, 529-540.	1.8	11
81	Effect of Sec61 interaction with Mpd1 on endoplasmic reticulum-associated degradation. PLoS ONE, 2019, 14, e0211180.	1.1	10
82	A misprocessed form of Apolipoprotein A-I is specifically associated with recurrent Focal Segmental Glomerulosclerosis. Scientific Reports, 2020, 10, 1159.	1.6	10
83	Mutational Analysis of Glycogen Synthase Kinase 3Î ² Protein Kinase Together with Kinome-Wide Binding and Stability Studies Suggests Context-Dependent Recognition of Kinases by the Chaperone Heat Shock Protein 90. Molecular and Cellular Biology, 2016, 36, 1007-1018.	1.1	9
84	The rise of proteomeâ€wide biophysics. Molecular Systems Biology, 2021, 17, e10442.	3.2	9
85	Transcriptional and Post-Transcriptional Polar Effects in Bacterial Gene Deletion Libraries. MSystems, 2021, 6, e0081321.	1.7	9
86	Evaluation of Data Analysis Strategies for Improved Mass Spectrometry-Based Phosphoproteomics. Analytical Chemistry, 2010, 82, 9843-9849.	3.2	8
87	Wilhelm et al. reply. Nature, 2017, 547, E23-E23.	13.7	7
88	PLDMS: Phosphopeptide Library Dephosphorylation Followed by Mass Spectrometry Analysis to Determine the Specificity of Phosphatases for Dephosphorylation Site Sequences. Methods in Molecular Biology, 2022, , 43-64.	0.4	1