Daniel M Wolpert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8144024/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Noise in the nervous system. Nature Reviews Neuroscience, 2008, 9, 292-303.	4.9	2,230
2	Signal-dependent noise determines motor planning. Nature, 1998, 394, 780-784.	13.7	2,197
3	Internal models in the cerebellum. Trends in Cognitive Sciences, 1998, 2, 338-347.	4.0	2,167
4	Computational principles of movement neuroscience. Nature Neuroscience, 2000, 3, 1212-1217.	7.1	1,709
5	Bayesian integration in sensorimotor learning. Nature, 2004, 427, 244-247.	13.7	1,688
6	Central cancellation of self-produced tickle sensation. Nature Neuroscience, 1998, 1, 635-640.	7.1	1,195
7	Principles of sensorimotor learning. Nature Reviews Neuroscience, 2011, 12, 739-751.	4.9	1,161
8	Motor prediction. Current Biology, 2001, 11, R729-R732.	1.8	1,077
9	Is the Cerebellum a Smith Predictor?. Journal of Motor Behavior, 1993, 25, 203-216.	0.5	1,040
10	A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 593-602.	1.8	956
11	Abnormalities in the awareness and control of action. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 1771-1788.	1.8	941
12	Computational approaches to motor control. Trends in Cognitive Sciences, 1997, 1, 209-216.	4.0	779
13	Abnormalities in the awareness of action. Trends in Cognitive Sciences, 2002, 6, 237-242.	4.0	755
14	Spatio-Temporal Prediction Modulates the Perception of Self-Produced Stimuli. Journal of Cognitive Neuroscience, 1999, 11, 551-559.	1.1	749
15	Why can't you tickle yourself?. NeuroReport, 2000, 11, R11-R16.	0.6	740
16	Bayesian decision theory in sensorimotor control. Trends in Cognitive Sciences, 2006, 10, 319-326.	4.0	724
17	MOSAIC Model for Sensorimotor Learning and Control. Neural Computation, 2001, 13, 2201-2220.	1.3	714
18	Explaining the symptoms of schizophrenia: Abnormalities in the awareness of action. Brain Research Reviews, 2000, 31, 357-363.	9.1	674

#	Article	IF	CITATIONS
19	Maintaining internal representations: the role of the human superior parietal lobe. Nature Neuroscience, 1998, 1, 529-533.	7.1	670
20	Perspectives and problems in motor learning. Trends in Cognitive Sciences, 2001, 5, 487-494.	4.0	667
21	Computational Mechanisms of Sensorimotor Control. Neuron, 2011, 72, 425-442.	3.8	563
22	When Feeling Is More Important Than Seeing in Sensorimotor Adaptation. Current Biology, 2002, 12, 834-837.	1.8	532
23	Changes of mind in decision-making. Nature, 2009, 461, 263-266.	13.7	528
24	The cerebellum is involved in predicting the sensory consequences of action. NeuroReport, 2001, 12, 1879-1884.	0.6	491
25	Sources of Signal-Dependent Noise During Isometric Force Production. Journal of Neurophysiology, 2002, 88, 1533-1544.	0.9	467
26	The Role of Execution Noise in Movement Variability. Journal of Neurophysiology, 2004, 91, 1050-1063.	0.9	385
27	Prediction Precedes Control in Motor Learning. Current Biology, 2003, 13, 146-150.	1.8	375
28	Risk-Sensitivity in Sensorimotor Control. Frontiers in Human Neuroscience, 2011, 5, 1.	1.0	363
29	Predicting the Consequences of Our Own Actions: The Role of Sensorimotor Context Estimation. Journal of Neuroscience, 1998, 18, 7511-7518.	1.7	361
30	Evidence for Sensory Prediction Deficits in Schizophrenia. American Journal of Psychiatry, 2005, 162, 2384-2386.	4.0	358
31	Motor control is decision-making. Current Opinion in Neurobiology, 2012, 22, 996-1003.	2.0	333
32	Two Eyes for an Eye: The Neuroscience of Force Escalation. Science, 2003, 301, 187-187.	6.0	326
33	Are arm trajectories planned in kinematic or dynamic coordinates? An adaptation study. Experimental Brain Research, 1995, 103, 460-70.	0.7	294
34	Computational principles of sensorimotor control that minimize uncertainty and variability. Journal of Physiology, 2007, 578, 387-396.	1.3	284
35	The statistics of natural hand movements. Experimental Brain Research, 2008, 188, 223-236.	0.7	261
36	The scaling of motor noise with muscle strength and motor unit number in humans. Experimental Brain Research, 2004, 157, 417-430.	0.7	237

#	Article	IF	CITATIONS
37	Failure to Consolidate the Consolidation Theory of Learning for Sensorimotor Adaptation Tasks. Journal of Neuroscience, 2004, 24, 8662-8671.	1.7	232
38	Temporal and Amplitude Generalization in Motor Learning. Journal of Neurophysiology, 1998, 79, 1825-1838.	0.9	226
39	Widespread access to predictive models in the motor system: a short review. Journal of Neural Engineering, 2005, 2, S313-S319.	1.8	214
40	Motor Task Variation Induces Structural Learning. Current Biology, 2009, 19, 352-357.	1.8	214
41	Modular decomposition in visuomotor learning. Nature, 1997, 386, 392-395.	13.7	204
42	A modular planar robotic manipulandum with end-point torque control. Journal of Neuroscience Methods, 2009, 181, 199-211.	1.3	199
43	Perception of the Consequences of Self-Action Is Temporally Tuned and Event Driven. Current Biology, 2005, 15, 1125-1128.	1.8	193
44	Role of uncertainty in sensorimotor control. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 1137-1145.	1.8	192
45	Sensorimotor attenuation by central motor command signals in the absence of movement. Nature Neuroscience, 2006, 9, 26-27.	7.1	188
46	Mental state inference using visual control parameters. Cognitive Brain Research, 2005, 22, 129-151.	3.3	185
47	Internal Models for Motor Control. Novartis Foundation Symposium, 1998, 218, 291-307.	1.2	185
48	The Cerebellum Contributes to Somatosensory Cortical Activity during Self-Produced Tactile Stimulation. NeuroImage, 1999, 10, 448-459.	2.1	183
49	Decision-making in sensorimotor control. Nature Reviews Neuroscience, 2018, 19, 519-534.	4.9	183
50	Deliberation in the Motor System: Reflex Gains Track Evolving Evidence Leading to a Decision. Journal of Neuroscience, 2012, 32, 2276-2286.	1.7	182
51	Kinematics and Dynamics Are Not Represented Independently in Motor Working Memory: Evidence from an Interference Study. Journal of Neuroscience, 2002, 22, 1108-1113.	1.7	180
52	The Main Sequence of Saccades Optimizes Speed-accuracy Trade-off. Biological Cybernetics, 2006, 95, 21-29.	0.6	180
53	Specificity of Reflex Adaptation for Task-Relevant Variability. Journal of Neuroscience, 2008, 28, 14165-14175.	1.7	179
54	Structure learning in action. Behavioural Brain Research, 2010, 206, 157-165.	1.2	176

#	Article	IF	CITATIONS
55	A common mechanism underlies changes of mind about decisions and confidence. ELife, 2016, 5, e12192.	2.8	172
56	Attenuation of Self-Generated Tactile Sensations Is Predictive, not Postdictive. PLoS Biology, 2006, 4, e28.	2.6	170
57	Generalization to Local Remappings of the Visuomotor Coordinate Transformation. Journal of Neuroscience, 1996, 16, 7085-7096.	1.7	166
58	Effective reinforcement learning following cerebellar damage requires a balance between exploration and motor noise. Brain, 2016, 139, 101-114.	3.7	161
59	Activation in Posterior Superior Temporal Sulcus Parallels Parameter Inducing the Percept of Animacy. Neuron, 2005, 45, 625-635.	3.8	160
60	The loss function of sensorimotor learning. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9839-9842.	3.3	155
61	Probabilistic models in human sensorimotor control. Human Movement Science, 2007, 26, 511-524.	0.6	154
62	Your Own Action Influences How You Perceive Another Person's Action. Current Biology, 2004, 14, 493-498.	1.8	150
63	Functional Magnetic Resonance Imaging of Impaired Sensory Prediction in Schizophrenia. JAMA Psychiatry, 2014, 71, 28.	6.0	138
64	Internal Representations of Temporal Statistics and Feedback Calibrate Motor-Sensory Interval Timing. PLoS Computational Biology, 2012, 8, e1002771.	1.5	137
65	Internal Models in Biological Control. Annual Review of Control, Robotics, and Autonomous Systems, 2019, 2, 339-364.	7.5	137
66	Evidence for an Eye-Centered Spherical Representation of the Visuomotor Map. Journal of Neurophysiology, 1999, 81, 935-939.	0.9	132
67	Sensorimotor prediction and memory in object manipulation Canadian Journal of Experimental Psychology, 2001, 55, 87-95.	0.7	132
68	On the Origins of Suboptimality in Human Probabilistic Inference. PLoS Computational Biology, 2014, 10, e1003661.	1.5	129
69	Hierarchical MOSAIC for movement generation. International Congress Series, 2003, 1250, 575-590.	0.2	124
70	Impedance Control Reduces Instability That Arises from Motor Noise. Journal of Neuroscience, 2009, 29, 12606-12616.	1.7	123
71	Consolidation of Dynamic Motor Learning Is Not Disrupted by rTMS of Primary Motor Cortex. Current Biology, 2004, 14, 252-256.	1.8	120
72	Gone in 0.6 Seconds: The Encoding of Motor Memories Depends on Recent Sensorimotor States. Journal of Neuroscience, 2012, 32, 12756-12768.	1.7	115

#	Article	IF	CITATIONS
73	Bayesian Integration in Force Estimation. Journal of Neurophysiology, 2004, 92, 3161-3165.	0.9	114
74	The effect of contextual cues on the encoding of motor memories. Journal of Neurophysiology, 2013, 109, 2632-2644.	0.9	114
75	Motor Planning, Not Execution, Separates Motor Memories. Neuron, 2016, 92, 773-779.	3.8	113
76	Visuomotor feedback gains upregulate during the learning of novel dynamics. Journal of Neurophysiology, 2012, 108, 467-478.	0.9	110
77	Perceptual distortion contributes to the curvature of human reaching movements. Experimental Brain Research, 1994, 98, 153-6.	0.7	109
78	Adaptation to a Visuomotor Shift Depends on the Starting Posture. Journal of Neurophysiology, 2002, 88, 973-981.	0.9	106
79	The Temporal Evolution of Feedback Gains Rapidly Update to Task Demands. Journal of Neuroscience, 2013, 33, 10898-10909.	1.7	105
80	Multiple single unit recording in the cortex of monkeys using independently moveable microelectrodes. Journal of Neuroscience Methods, 1999, 94, 5-17.	1.3	102
81	Kinematic cues in perceptual weight judgement and their origins in box lifting. Psychological Research, 2007, 71, 13-21.	1.0	102
82	Parallel specification of competing sensorimotor control policies for alternative action options. Nature Neuroscience, 2016, 19, 320-326.	7.1	102
83	Rhythm generation in monkey motor cortex explored using pyramidal tract stimulation. Journal of Physiology, 2002, 541, 685-699.	1.3	101
84	Near Optimal Combination of Sensory and Motor Uncertainty in Time During a Naturalistic Perception-Action Task. Journal of Neurophysiology, 2009, 101, 1901-1912.	0.9	101
85	Ageing increases reliance on sensorimotor prediction through structural and functional differences in frontostriatal circuits. Nature Communications, 2016, 7, 13034.	5.8	101
86	Optimal Control Predicts Human Performance on Objects with Internal Degrees of Freedom. PLoS Computational Biology, 2009, 5, e1000419.	1.5	98
87	Theoretical perspectives on active sensing. Current Opinion in Behavioral Sciences, 2016, 11, 100-108.	2.0	95
88	Motor learning. Current Biology, 2010, 20, R467-R472.	1.8	94
89	Confidence Is the Bridge between Multi-stage Decisions. Current Biology, 2016, 26, 3157-3168.	1.8	93
90	The Role of Inertial Sensitivity in Motor Planning. Journal of Neuroscience, 1998, 18, 5948-5957.	1.7	88

#	Article	IF	CITATIONS
91	Statistics of Natural Movements Are Reflected in Motor Errors. Journal of Neurophysiology, 2009, 102, 1902-1910.	0.9	87
92	Controlling the Statistics of Action: Obstacle Avoidance. Journal of Neurophysiology, 2002, 87, 2434-2440.	0.9	86
93	Computations underlying sensorimotor learning. Current Opinion in Neurobiology, 2016, 37, 7-11.	2.0	86
94	Mere Expectation to Move Causes Attenuation of Sensory Signals. PLoS ONE, 2008, 3, e2866.	1.1	86
95	Fast But Fleeting: Adaptive Motor Learning Processes Associated with Aging and Cognitive Decline. Journal of Neuroscience, 2014, 34, 13411-13421.	1.7	84
96	Learning Optimal Adaptation Strategies in Unpredictable Motor Tasks. Journal of Neuroscience, 2009, 29, 6472-6478.	1.7	82
97	Modulation of somatosensory processing by action. Neurolmage, 2013, 70, 356-362.	2.1	82
98	Contextual inference underlies the learning of sensorimotor repertoires. Nature, 2021, 600, 489-493.	13.7	82
99	Predictive Motor Learning of Temporal Delays. Journal of Neurophysiology, 1999, 82, 2039-2048.	0.9	79
100	Context Estimation for Sensorimotor Control. Journal of Neurophysiology, 2000, 84, 1026-1034.	0.9	78
101	Task-dependent coordination of rapid bimanual motor responses. Journal of Neurophysiology, 2012, 107, 890-901.	0.9	78
102	Motor Effort Alters Changes of Mind in Sensorimotor Decision Making. PLoS ONE, 2014, 9, e92681.	1.1	78
103	Motor learning and prediction in a variable environment. Current Opinion in Neurobiology, 2003, 13, 232-237.	2.0	75
104	Nash Equilibria in Multi-Agent Motor Interactions. PLoS Computational Biology, 2009, 5, e1000468.	1.5	75
105	Active sensing in the categorization of visual patterns. ELife, 2016, 5, .	2.8	75
106	Motor learning of novel dynamics is not represented in a single global coordinate system: evaluation of mixed coordinate representations and local learning. Journal of Neurophysiology, 2014, 111, 1165-1182.	0.9	74
107	Earthquakes, influenza and cycles of Indian kala-azar. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1988, 82, 843-850.	0.7	73
108	The Value of the Follow-Through Derives from Motor Learning Depending on Future Actions. Current Biology, 2015, 25, 397-401.	1.8	73

#	Article	IF	CITATIONS
109	Deficits in sensory prediction are related to delusional ideation in healthy individuals. Neuropsychologia, 2010, 48, 4169-4172.	0.7	71
110	Sensorimotor Integration Compensates for Visual Localization Errors During Smooth Pursuit Eye Movements. Journal of Neurophysiology, 2001, 85, 1914-1922.	0.9	67
111	The influence of previous experience on predictive motor control. NeuroReport, 2001, 12, 649-653.	0.6	67
112	Action plan co-optimization reveals the parallel encoding of competing reach movements. Nature Communications, 2015, 6, 7428.	5.8	67
113	Optimal Control of Redundant Muscles in Step-Tracking Wrist Movements. Journal of Neurophysiology, 2005, 94, 4244-4255.	0.9	66
114	Multiple Grasp-Specific Representations of Tool Dynamics Mediate Skillful Manipulation. Current Biology, 2010, 20, 618-623.	1.8	65
115	Risk-Sensitive Optimal Feedback Control Accounts for Sensorimotor Behavior under Uncertainty. PLoS Computational Biology, 2010, 6, e1000857.	1.5	64
116	Internal models underlying grasp can be additively combined. Experimental Brain Research, 2004, 155, 334-340.	0.7	57
117	Flexible Representations of Dynamics Are Used in Object Manipulation. Current Biology, 2008, 18, 763-768.	1.8	56
118	Where does your own action influence your perception of another person's action in the brain?. NeuroImage, 2006, 29, 524-535.	2.1	55
119	Representations of uncertainty in sensorimotor control. Current Opinion in Neurobiology, 2011, 21, 629-635.	2.0	55
120	Rhythmicity, randomness and synchrony in climbing fiber signals. Trends in Neurosciences, 2005, 28, 611-619.	4.2	52
121	A Neuroeconomics Approach to Inferring Utility Functions in Sensorimotor Control. PLoS Biology, 2004, 2, e330.	2.6	51
122	Learning and Decay of Prediction in Object Manipulation. Journal of Neurophysiology, 2000, 84, 334-343.	0.9	50
123	An improvement in perception of self-generated tactile stimuli following theta-burst stimulation of primary motor cortex. Neuropsychologia, 2007, 45, 2712-2717.	0.7	50
124	Separate representations of dynamics in rhythmic and discrete movements: evidence from motor learning. Journal of Neurophysiology, 2011, 105, 1722-1731.	0.9	49
125	Piercing of Consciousness as a Threshold-Crossing Operation. Current Biology, 2017, 27, 2285-2295.e6.	1.8	49
126	Context-Dependent Partitioning of Motor Learning in Bimanual Movements. Journal of Neurophysiology, 2010, 104, 2082-2091.	0.9	48

#	Article	IF	CITATIONS
127	Increasing Motor Noise Impairs Reinforcement Learning in Healthy Individuals. ENeuro, 2018, 5, ENEURO.0050-18.2018.	0.9	48
128	Facilitation of learning induced by both random and gradual visuomotor task variation. Journal of Neurophysiology, 2012, 107, 1111-1122.	0.9	47
129	Multiple motor memories are learned to control different points on a tool. Nature Human Behaviour, 2018, 2, 300-311.	6.2	47
130	The effect of visuomotor displacements on arm movement paths. Experimental Brain Research, 1999, 127, 213-223.	0.7	45
131	Rapid Visuomotor Responses Reflect Value-Based Decisions. Journal of Neuroscience, 2019, 39, 3906-3920.	1.7	45
132	High-frequency repetitive transcranial magnetic stimulation over the hand area of the primary motor cortex disturbs predictive grip force scaling. European Journal of Neuroscience, 2005, 22, 2392-2396.	1.2	44
133	Cognitive Tomography Reveals Complex, Task-Independent Mental Representations. Current Biology, 2013, 23, 2169-2175.	1.8	44
134	Planning Movements in a Simple Redundant Task. Current Biology, 2002, 12, 488-491.	1.8	43
135	Risk-sensitivity and the mean-variance trade-off: decision making in sensorimotor control. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2325-2332.	1.2	43
136	Age-related reduction in motor adaptation: brain structural correlates and the role of explicit memory. Neurobiology of Aging, 2020, 90, 13-23.	1.5	42
137	When Optimal Feedback Control Is Not Enough: Feedforward Strategies Are Required for Optimal Control with Active Sensing. PLoS Computational Biology, 2016, 12, e1005190.	1.5	42
138	Counterfactual Reasoning Underlies the Learning of Priors in Decision Making. Neuron, 2018, 99, 1083-1097.e6.	3.8	41
139	Transfer of Dynamic Learning Across Postures. Journal of Neurophysiology, 2009, 102, 2816-2824.	0.9	40
140	Risk sensitivity in a motor task with speed-accuracy trade-off. Journal of Neurophysiology, 2011, 105, 2668-2674.	0.9	40
141	Increasing muscle co-contraction speeds up internal model acquisition during dynamic motor learning. Scientific Reports, 2018, 8, 16355.	1.6	40
142	Scaling down motor memories: de-adaptation after motor learning. Neuroscience Letters, 2004, 370, 102-107.	1.0	38
143	Interference between velocity-dependent and position-dependent force-fields indicates that tasks depending on different kinematic parameters compete for motor working memory. Experimental Brain Research, 2005, 163, 400-405.	0.7	38
144	Context-Dependent Decay of Motor Memories during Skill Acquisition. Current Biology, 2013, 23, 1107-1112.	1.8	36

#	Article	IF	CITATIONS
145	Rapid Automatic Motor Encoding of Competing Reach Options. Cell Reports, 2017, 18, 1619-1626.	2.9	36
146	A Single-Rate Context-Dependent Learning Process Underlies Rapid Adaptation to Familiar Object Dynamics. PLoS Computational Biology, 2011, 7, e1002196.	1.5	35
147	Simultaneous bimanual dynamics are learned without interference. Experimental Brain Research, 2007, 183, 17-25.	0.7	34
148	Seeing what you want to see: priors for one's own actions represent exaggerated expectations of success. Frontiers in Behavioral Neuroscience, 2014, 8, 232.	1.0	34
149	The sequential encoding of competing action goals involves dynamic restructuring of motor plans in working memory. Journal of Neurophysiology, 2016, 115, 3113-3122.	0.9	34
150	TOPS (Task Optimization in the Presence of Signal-Dependent Noise) model. Systems and Computers in Japan, 2004, 35, 48-58.	0.2	33
151	Composition and Decomposition in Bimanual Dynamic Learning. Journal of Neuroscience, 2008, 28, 10531-10540.	1.7	33
152	Rapid visuomotor feedback gains are tuned to the task dynamics. Journal of Neurophysiology, 2017, 118, 2711-2726.	0.9	33
153	Naturalistic approaches to sensorimotor control. Progress in Brain Research, 2011, 191, 3-29.	0.9	32
154	Imagery of movements immediately following performance allows learning of motor skills that interfere. Scientific Reports, 2018, 8, 14330.	1.6	30
155	Sensory attenuation in Parkinson's disease is related to disease severity and dopamine dose. Scientific Reports, 2018, 8, 15643.	1.6	30
156	Fractionation of the visuomotor feedback response to directions of movement and perturbation. Journal of Neurophysiology, 2014, 112, 2218-2233.	0.9	29
157	Rapid target foraging with reach or gaze: The hand looks further ahead than the eye. PLoS Computational Biology, 2017, 13, e1005504.	1.5	28
158	Motor coordination: when two have to act as one. Experimental Brain Research, 2011, 211, 631-641.	0.7	27
159	Rapid Visuomotor Corrective Responses during Transport of Hand-Held Objects Incorporate Novel Object Dynamics. Journal of Neuroscience, 2015, 35, 10572-10580.	1.7	27
160	Structure Learning in a Sensorimotor Association Task. PLoS ONE, 2010, 5, e8973.	1.1	26
161	Inferring Visuomotor Priors for Sensorimotor Learning. PLoS Computational Biology, 2011, 7, e1001112.	1.5	26
162	Comment on "Single-trial spike trains in parietal cortex reveal discrete steps during decision-making― Science, 2016, 351, 1406-1406.	6.0	26

#	Article	IF	CITATIONS
163	Model-Free Robust Optimal Feedback Mechanisms of Biological Motor Control. Neural Computation, 2020, 32, 562-595.	1.3	26
164	Multiple decisions about one object involve parallel sensory acquisition but time-multiplexed evidence incorporation. ELife, 2021, 10, .	2.8	26
165	Actions and Consequences in Bimanual Interaction Are Represented in Different Coordinate Systems. Journal of Neuroscience, 2006, 26, 7121-7126.	1.7	25
166	Spatial Representation of Predictive Motor Learning. Journal of Neurophysiology, 2003, 89, 1837-1843.	0.9	24
167	Motor systems. Current Opinion in Neurobiology, 2005, 15, 623-625.	2.0	22
168	Grip force when reaching with target uncertainty provides evidence for motor optimization over averaging. Scientific Reports, 2017, 7, 11703.	1.6	21
169	Common Encoding of Novel Dynamic Loads Applied to the Hand and Arm. Journal of Neuroscience, 2005, 25, 5425-5429.	1.7	20
170	Q&A: Robotics as a tool to understand the brain. BMC Biology, 2010, 8, 92.	1.7	19
171	Target Uncertainty Mediates Sensorimotor Error Correction. PLoS ONE, 2017, 12, e0170466.	1.1	18
172	The effect of externally generated loading on predictive grip force modulation. Neuroscience Letters, 2007, 414, 10-15.	1.0	17
173	Enhanced crosslimb transfer of force-field learning for dynamics that are identical in extrinsic and joint-based coordinates for both limbs. Journal of Neurophysiology, 2016, 115, 445-456.	0.9	15
174	The Sensorimotor System Can Sculpt Behaviorally Relevant Representations for Motor Learning. ENeuro, 2016, 3, ENEURO.0070-16.2016.	0.9	13
175	Coordinate Representations for Interference Reduction in Motor Learning. PLoS ONE, 2015, 10, e0129388.	1.1	11
176	An error-tuned model for sensorimotor learning. PLoS Computational Biology, 2017, 13, e1005883.	1.5	11
177	Unimodal statistical learning produces multimodal object-like representations. ELife, 2019, 8, .	2.8	11
178	Motor memories of object dynamics are categorically organized. ELife, 2021, 10, .	2.8	11
179	Human decision making anticipates future performance in motor learning. PLoS Computational Biology, 2020, 16, e1007632.	1.5	10
180	The CNS updates its context estimate in the absence of feedback. NeuroReport, 2000, 11, 3783-3786.	0.6	9

#	ARTICLE	IF	CITATIONS
181	Feedback Modulation: A Window into Cortical Function. Current Biology, 2011, 21, R924-R926.	1.8	9
182	Selection and control of limb posture for stability. , 2013, 2013, 5626-9.		9
183	Motor Systems: Reaching Out and Grasping the Molecular Tools. Current Biology, 2014, 24, R269-R271.	1.8	6
184	Computing the Optimal Trajectory of Arm Movement: The TOPS (Task Optimization in the Presence of) Tj ETQqQ	0 0 rgBT 0.6	Overlock 10
185	Optimal Control: When Redundancy Matters. Current Biology, 2007, 17, R973-R975.	1.8	5
186	Computations in Sensorimotor Learning. Cold Spring Harbor Symposia on Quantitative Biology, 2014, 79, 93-98.	2.0	4
187	Adaptive coupling influences generalization of sensorimotor learning. PLoS ONE, 2018, 13, e0207482.	1.1	4
188	Separate motor memories are formed when controlling different implicitly specified locations on a tool. Journal of Neurophysiology, 2019, 121, 1342-1351.	0.9	4
189	Motor memories in manipulation tasks are linked to contact goals between objects. Journal of Neurophysiology, 2020, 124, 994-1004.	0.9	4
190	Probabilistic Mechanisms in Sensorimotor Control. Novartis Foundation Symposium, 0, , 191-202.	1.2	4
191	Neurophysiology: Cerebral Carbon Copies. Current Biology, 2002, 12, R552-R553.	1.8	3
192	The visual geometry of a tool modulates generalization during adaptation. Scientific Reports, 2019, 9, 2731.	1.6	3
193	Maps, Modules, and Internal Models in Human Motor Control. , 2000, , 317-324.		1
194	Response to Gilbert: Rhythmicity, randomness and synchrony in climbing fiber signals. Trends in Neurosciences, 2006, 29, 66-67.	4.2	0
195	Structural Learning in Sensorimotor Control. , 2012, , 3208-3211.		0
196	Reach adaption to a visuomotor gain with terminal error feedback involves reinforcement learning. PLoS ONE, 2022, 17, e0269297.	1.1	0