
Marcela Socol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8143769/publications.pdf Version: 2024-02-01

MARCELA SOCOL

#	Article	IF	CITATIONS
1	Pulsed laser deposition of transparent conductive oxide thin films on flexible substrates. Applied Surface Science, 2012, 260, 42-46.	6.1	62
2	Superhydrophobic properties of cotton fabrics functionalized with ZnO by electroless deposition. Materials Chemistry and Physics, 2013, 138, 253-261.	4.0	62
3	On the structural, morphological, optical and electrical properties of sol–gel deposited ZnO:In films. Thin Solid Films, 2010, 519, 573-577.	1.8	52
4	Pulsed Laser Deposition of Indium Tin Oxide Thin Films on Nanopatterned Glass Substrates. Coatings, 2019, 9, 19.	2.6	32
5	Composite biodegradable biopolymer coatings of silk fibroin – Poly(3-hydroxybutyric-acid-co-3-hydroxyvaleric-acid) for biomedical applications. Applied Surface Science, 2015, 355, 1123-1131.	6.1	30
6	Maple prepared organic heterostructures for photovoltaic applications. Applied Physics A: Materials Science and Processing, 2011, 104, 921-928.	2.3	29
7	Oxide/metal/oxide electrodes for solar cell applications. Solar Energy, 2017, 146, 464-469.	6.1	25
8	Thin films of arylenevinylene oligomers prepared by MAPLE for applications in non-linear optics. Applied Surface Science, 2011, 257, 5298-5302.	6.1	23
9	Superhydrophobic ZnO networks with high water adhesion. Nanoscale Research Letters, 2014, 9, 385.	5.7	23
10	Effect of dopant on the intrinsic properties of some multifunctional aromatic compounds films for target applications. Synthetic Metals, 2004, 147, 215-220.	3.9	22
11	MAPLE prepared polymeric thin films for non-linear optic applications. Applied Surface Science, 2009, 255, 5611-5614.	6.1	22
12	Long-Term Evaluation of Dip-Coated PCL-Blend-PEG Coatings in Simulated Conditions. Polymers, 2020, 12, 717.	4.5	22
13	Titanium implants' surface functionalization by pulsed laser deposition of TiN, ZrC and ZrN hard films. Applied Surface Science, 2017, 417, 175-182.	6.1	21
14	Thickness Influence on In Vitro Biocompatibility of Titanium Nitride Thin Films Synthesized by Pulsed Laser Deposition. Materials, 2016, 9, 38.	2.9	19
15	Hybrid Nanocomposite Thin Films for Photovoltaic Applications: A Review. Nanomaterials, 2021, 11, 1117.	4.1	18
16	Optical Properties of 3,4,9,10-Perylenetetracarboxylic Dianhydride and 8-Hydroxyquinoline Aluminum Salt Films Prepared by Vacuum Deposition. Materials Science Forum, 2006, 514-516, 956-960.	0.3	16
17	Doped aromatic derivatives wide-gap crystalline semiconductor structured layers for electronic application. Thin Solid Films, 2006, 495, 389-393.	1.8	15
18	Laser Processed Antimicrobial Nanocomposite Based on Polyaniline Grafted Lignin Loaded with Gentamicin-Functionalized Magnetite. Polymers, 2019, 11, 283.	4.5	15

MARCELA SOCOL

#	Article	IF	CITATIONS
19	Laser prepared organic heterostuctures on glass/AZO substrates. Applied Surface Science, 2014, 302, 169-176.	6.1	14
20	Molecular organic crystalline matrix for hybrid organic–inorganic (nano) composite materials. Journal of Crystal Growth, 2005, 275, e1779-e1786.	1.5	12
21	Tailoring immobilization of immunoglobulin by excimer laser for biosensor applications. Journal of Biomedical Materials Research - Part A, 2011, 96A, 384-394.	4.0	12
22	Electrical transport in crystalline perylene derivatives films for electronic devices. Solid State Sciences, 2008, 10, 1762-1767.	3.2	11
23	Effect of the morphology on the optical and electrical properties of polycarbonate film doped with aniline derivatives monomers. Synthetic Metals, 2012, 161, 2589-2597.	3.9	11
24	Silicon Metalens Fabrication from Electron Beam to UV-Nanoimprint Lithography. Nanomaterials, 2021, 11, 2329.	4.1	11
25	On the Physical Properties PEDOT:PSS Thin Films. Materials Today Communications, 2020, 22, 100735.	1.9	10
26	Effect of maleic anhydride–aniline derivative buffer layer on the properties of flexible substrate heterostructures: Indium tin oxide/nucleic acid base/metal. Thin Solid Films, 2011, 520, 1251-1258.	1.8	9
27	Organic heterostructures based on arylenevinylene oligomers deposited by MAPLE. Applied Surface Science, 2014, 302, 216-222.	6.1	8
28	Thin Films Based on Cobalt Phthalocyanine:C60 Fullerene:ZnO Hybrid Nanocomposite Obtained by Laser Evaporation. Nanomaterials, 2020, 10, 468.	4.1	8
29	Optical and electrical properties of arylenevinylene compounds thin films prepared by vacuum evaporation. Synthetic Metals, 2012, 161, 2612-2617.	3.9	7
30	Organic Thin Films Based on DPP-DTT:C60 Blends Deposited by MAPLE. Nanomaterials, 2020, 10, 2366.	4.1	7
31	Organic Thin Films Deposited by Matrix-Assisted Pulsed Laser Evaporation (MAPLE) for Photovoltaic Cell Applications: A Review. Coatings, 2021, 11, 1368.	2.6	7
32	Thin Film Fabrication by Pulsed Laser Deposition from TiO2 Targets in O2, N2, He, or Ar for Dye-Sensitized Solar Cells. Coatings, 2022, 12, 293.	2.6	7
33	Surface-enhanced Raman scattering activity of niobium surface after irradiation with femtosecond laser pulses. Journal of Applied Physics, 2015, 118, .	2.5	6
34	MAPLE Deposition of Binary and Ternary Organic Bulk Heterojunctions Based on Zinc Phthalocyanine. Coatings, 2020, 10, 956.	2.6	5
35	Reduced Graphene Oxide Sheets as Inhibitors of the Photochemical Reactions of α-Lipoic Acid in the Presence of Ag and Au Nanoparticles. Nanomaterials, 2020, 10, 2238.	4.1	5
36	<title>Fluorescence of substituted aromatic derivatives crystalline materials for optical nonlinear</td><td></td><td>4</td></tr></tbody></table></title>		

applications</title>., 2004, 5581, 600.

3

MARCELA SOCOL

#	Article	IF	CITATIONS
37	Investigations of the Correlation between the Preparation Method and the Properties of Anilinic Derivative Functionalised Polymer Thin Films for Non-Linear Optical Applications. Materials Science Forum, 2010, 636-637, 798-804.	0.3	4
38	Growth and structural characterization of orthorhombic and tetragonal SrCuO2 thin films. Applied Surface Science, 2013, 278, 132-135.	6.1	4
39	Influence of Reduced Graphene Oxide on the Electropolymerization of 5-Amino-1-naphthol and the Interaction of 1,4-Phenylene Diisothiocyanate with the Poly(5-Amino-1-naphtol)/Reduced Graphene Oxide Composite. Polymers, 2020, 12, 1299.	4.5	4
40	Pulsed laser deposition of semiconducting crystalline double-doped barium titanate thin films on nickel substrates. Applied Surface Science, 2011, 257, 3570-3576.	6.1	3
41	Matrix assisted pulsed laser evaporation of Mn12(Propionate) thin films. Applied Surface Science, 2012, 258, 9471-9474.	6.1	3
42	Effect of heavy ions irradiation on the properties of benzil crystals. Crystal Research and Technology, 2017, 52, 1700047.	1.3	3
43	Heterostructures Based on Porphyrin/Phthalocyanine Thin Films for Organic Device Applications. , 0, ,		3
44	Arylenevinylene Oligomer-Based Heterostructures on Flexible AZO Electrodes. Materials, 2021, 14, 7688.	2.9	3
45	Synthesis of ZnO thin films by 40 ps @ 532 nm laser pulses. Applied Physics A: Materials Science and Processing, 2011, 104, 871-876.	2.3	2
46	Electro-active properties of nanostructured films of cytosine and guanine nucleobases. Nanotechnology, 2021, 32, 415702.	2.6	2
47	Organic Heterostructures with Indiumâ€Free Transparent Conductor Electrode for Optoelectronic Applications. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	1.8	2
48	Laser Prepared Thin Films for Optoelectronic Applications. , 2017, , .		1
49	Pulsed Laser Deposition of Transparent Conductive Oxides on UV-NIL Patterned Substrates for Optoelectronic Applications. , 0, , .		0