Laurence Padman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8143727/publications.pdf

Version: 2024-02-01

118

all docs

109 8,466 46
papers citations h-index

118

docs citations

118 5791 times ranked citing authors

88

g-index

#	Article	IF	CITATIONS
1	Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 2012, 484, 502-505.	13.7	1,051
2	Volume loss from Antarctic ice shelves is accelerating. Science, 2015, 348, 327-331.	6.0	575
3	An Active Subglacial Water System in West Antarctica Mapped from Space. Science, 2007, 315, 1544-1548.	6.0	406
4	Accuracy assessment of global barotropic ocean tide models. Reviews of Geophysics, 2014, 52, 243-282.	9.0	338
5	A new tide model for the Antarctic ice shelves and seas. Annals of Glaciology, 2002, 34, 247-254.	2.8	331
6	Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13415-13419.	3.3	278
7	Tidally Controlled Stick-Slip Discharge of a West Antarctic Ice. Science, 2003, 301, 1087-1089.	6.0	260
8	A barotropic inverse tidal model for the Arctic Ocean. Geophysical Research Letters, 2004, 31, .	1.5	246
9	Toward Quantifying the Increasing Role of Oceanic Heat in Sea Ice Loss in the New Arctic. Bulletin of the American Meteorological Society, 2015, 96, 2079-2105.	1.7	217
10	Ice shelf water overflow and bottom water formation in the southern Weddell Sea. Journal of Geophysical Research, 2004, 109, .	3.3	196
11	Getting around Antarctica: new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic ice sheet created for the International Polar Year. Cryosphere, 2011, 5, 569-588.	1.5	187
12	Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves. Nature Geoscience, 2020, 13, 616-620.	5.4	169
13	Ice shelf grounding zone structure from ICESat laser altimetry. Geophysical Research Letters, 2006, 33,	1.5	139
14	Vertical heat fluxes through the Beaufort Sea thermohaline staircase. Journal of Geophysical Research, 1987, 92, 10799-10806.	3.3	127
15	Mapping the grounding zone of the Amery Ice Shelf, East Antarctica using InSAR, MODIS and ICESat. Antarctic Science, 2009, 21, 515-532.	0.5	124
16	Melting and freezing beneath Filchner-Ronne Ice Shelf, Antarctica. Geophysical Research Letters, 2003, 30, .	1.5	123
17	Ocean Tide Influences on the Antarctic and Greenland Ice Sheets. Reviews of Geophysics, 2018, 56, 142-184.	9.0	119
18	Response of Pacific-sector Antarctic ice shelves to the El Ni $\tilde{A}\pm o$ /Southern Oscillation. Nature Geoscience, 2018, 11, 121-126.	5.4	117

#	Article	IF	Citations
19	Turbulent mixing near the Yermak Plateau during the Coordinated Eastern Arctic Experiment. Journal of Geophysical Research, 1991, 96, 4769-4782.	3.3	106
20	Mapping the grounding zone of the Ross Ice Shelf, Antarctica, using ICESat laser altimetry. Annals of Glaciology, 2010, 51, 71-79.	2.8	100
21	The Application of Internal-Wave Dissipation Models to a Region of Strong Mixing. Journal of Physical Oceanography, 1993, 23, 269-286.	0.7	94
22	Tides of the northwestern Ross Sea and their impact on dense outflows of Antarctic Bottom Water. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 818-834.	0.6	93
23	Diurnal tides near the Yermak Plateau. Journal of Geophysical Research, 1992, 97, 12639-12652.	3.3	90
24	Ross Ice Shelf response to climate driven by the tectonic imprint on seafloor bathymetry. Nature Geoscience, 2019, 12, 441-449.	5.4	88
25	Tides of the Ross Sea and Ross Ice Shelf cavity. Antarctic Science, 2003, 15, 31-40.	0.5	87
26	Basal mass budget of Ross and Filchnerâ€Ronne ice shelves, Antarctica, derived from Lagrangian analysis of ICESat altimetry. Journal of Geophysical Research F: Earth Surface, 2014, 119, 2361-2380.	1.0	86
27	Tidally driven stick–slip motion in the mouth of Whillans Ice Stream, Antarctica. Annals of Glaciology, 2003, 36, 263-272.	2.8	84
28	Improving Antarctic tide models by assimilation of ICESat laser altimetry over ice shelves. Geophysical Research Letters, 2008, 35, .	1.5	84
29	Weakening of Cold Halocline Layer Exposes Sea Ice to Oceanic Heat in the Eastern Arctic Ocean. Journal of Climate, 2020, 33, 8107-8123.	1.2	82
30	The Antarctic Zone Flux Experiment. Bulletin of the American Meteorological Society, 1996, 77, 1221-1232.	1.7	73
31	Accuracy assessment of ocean tide models around Antarctica. Geophysical Research Letters, 2005, 32, .	1.5	72
32	Tides in the Weddell Sea. Antarctic Research Series, 0, , 341-369.	0.2	69
33	Interannual changes of the floating ice shelf of Petermann Gletscher, North Greenland, from 2000 to 2012. Journal of Glaciology, 2014, 60, 489-499.	1.1	68
34	Thermohaline variability and Antarctic bottom water formation at the Ross Sea shelf break. Deep-Sea Research Part I: Oceanographic Research Papers, 2011, 58, 1002-1018.	0.6	66
35	Oceanic controls on the mass balance of Wilkins Ice Shelf, Antarctica. Journal of Geophysical Research, 2012, 117, .	3.3	62
36	Mooring-Based Observations of Double-Diffusive Staircases over the Laptev Sea Slope*. Journal of Physical Oceanography, 2012, 42, 95-109.	0.7	62

#	Article	IF	CITATIONS
37	A dense water outflow from the Ross Sea, Antarctica: Mixing and the contribution of tides. Journal of Marine Systems, 2009, 77, 369-387.	0.9	61
38	Impact of tideâ€topography interactions on basal melting of Larsen C Ice Shelf, Antarctica. Journal of Geophysical Research, 2012, 117, .	3. 3	61
39	Variable Basal Melt Rates of Antarctic Peninsula Ice Shelves, 1994–2016. Geophysical Research Letters, 2018, 45, 4086-4095.	1.5	60
40	Fine structure, microstructure, and vertical mixing processes in the upper ocean in the western Weddell Sea. Journal of Geophysical Research, 1995, 100, 18517.	3.3	59
41	Ice-shelf elevation changes due to atmospheric pressure variations. Journal of Glaciology, 2003, 49, 521-526.	1.1	57
42	Ocean variability contributing to basal melt rate near the ice front of Ross Ice Shelf, Antarctica. Journal of Geophysical Research: Oceans, 2014, 119, 4214-4233.	1.0	57
43	Maud Rise revisited. Journal of Geophysical Research, 2001, 106, 2423-2440.	3.3	56
44	Thermal microstructure and internal waves in the Canada Basin diffusive staircase. Deep-sea Research Part A, Oceanographic Research Papers, 1989, 36, 531-542.	1.6	53
45	Water mass modification over the continental shelf north of Ronne Ice Shelf, Antarctica. Journal of Geophysical Research, 2003, 108, .	3.3	53
46	Winter Convection Transports Atlantic Water Heat to the Surface Layer in the Eastern Arctic Ocean*. Journal of Physical Oceanography, 2013, 43, 2142-2155.	0.7	51
47	Thirty years of elevation change on Antarctic Peninsula ice shelves from multimission satellite radar altimetry. Journal of Geophysical Research, 2012, 117, .	3.3	51
48	Mixing in the pycnocline over the western Antarctic Peninsula shelf during Southern Ocean GLOBEC. Deep-Sea Research Part II: Topical Studies in Oceanography, 2004, 51, 1965-1979.	0.6	50
49	Observation of ocean tides below the Filchner and Ronne Ice Shelves, Antarctica, using synthetic aperture radar interferometry: Comparison with tide model predictions. Journal of Geophysical Research, 2000, 105, 19615-19630.	3.3	48
50	High-frequency ice motion and divergence in the Weddell Sea. Journal of Geophysical Research, 2000, 105, 3379-3400.	3.3	46
51	Analysis of ice plains of the Filchner–Ronne Ice Shelf, Antarctica, using ICESat laser altimetry. Journal of Glaciology, 2011, 57, 965-975.	1.1	46
52	Role of tides on the formation of the <scp>A</scp> ntarctic <scp>S</scp> lope <scp>F</scp> ront at the <scp>W</scp> eddellâ€ <scp>S</scp> cotia Confluence. Journal of Geophysical Research: Oceans, 2015, 120, 3658-3680.	1.0	41
53	On the Horizontal Extent of the Canada Basin Thermohaline Steps. Journal of Physical Oceanography, 1988, 18, 1458-1462.	0.7	40
54	Hydrography and microstructure of an Arctic cyclonic eddy. Journal of Geophysical Research, 1990, 95, 9411-9420.	3.3	40

#	Article	IF	Citations
55	Seals map bathymetry of the Antarctic continental shelf. Geophysical Research Letters, 2010, 37, .	1.5	40
56	Ocean forced variability of Totten Glacier mass loss. Geological Society Special Publication, 2018, 461, 175-186.	0.8	36
57	Some statistical and dynamical properties of turbulence in the oceanic pycnocline. Journal of Geophysical Research, 1993, 98, 22665-22679.	3.3	35
58	Summer upwelling on the Sydney inner continental shelf: The relative roles of local wind forcing and mesoscale eddy encroachment. Continental Shelf Research, 1991, 11, 321-345.	0.9	34
59	Tidal influences on a future evolution of the Filchner–Ronne Ice Shelf cavity in the Weddell Sea, Antarctica. Cryosphere, 2018, 12, 453-476.	1.5	33
60	Summer surface melt thins Petermann Gletscher Ice Shelf by enhancing channelized basal melt. Journal of Glaciology, 2019, 65, 662-674.	1.1	33
61	The Ice Shelf of Petermann Gletscher, North Greenland, and Its Connection to the Arctic and Atlantic Oceans., 2016, 29, 84-95.		32
62	Constructing improved decadal records of Antarctic ice shelf height change from multiple satellite radar altimeters. Remote Sensing of Environment, 2016, 177, 192-205.	4.6	32
63	Tidally Forced Lee Waves Drive Turbulent Mixing Along the Arctic Ocean Margins. Geophysical Research Letters, 2020, 47, e2020GL088083.	1.5	32
64	Intensification of Nearâ€Surface Currents and Shear in the Eastern Arctic Ocean. Geophysical Research Letters, 2020, 47, e2020GL089469.	1.5	32
65	Internal waves and tides in the western Weddell Sea: Observations from Ice Station Weddell. Journal of Geophysical Research, 1997, 102, 1073-1089.	3.3	31
66	RADARSAT interferometry for Antarctic grounding-zone mapping. Annals of Glaciology, 2002, 34, 269-276.	2.8	31
67	Small-scale physical processes in the Arctic Ocean. Coastal and Estuarine Studies, 1995, , 97-129.	0.4	30
68	Tides on Filchner-Ronne Ice Shelf from ERS radar altimetry. Geophysical Research Letters, 2002, 29, 60-1.	1.5	30
69	Influence of tides on sea ice in the Weddell Sea: Investigations with a high-resolution dynamic-thermodynamic sea ice model. Journal of Geophysical Research, 2005, 110, .	3.3	30
70	Assimilation of Ship-Mounted ADCP Data for Barotropic Tides: Application to the Ross Sea. Journal of Atmospheric and Oceanic Technology, 2005, 22, 721-734.	0.5	29
71	Ocean tides in the Weddell Sea: New observations on the Filchner-Ronne and Larsen C ice shelves and model validation. Journal of Geophysical Research, 2011, 116, .	3.3	29
72	Evolution of the Seasonal Surface Mixed Layer of the Ross Sea, Antarctica, Observed With Autonomous Profiling Floats. Journal of Geophysical Research: Oceans, 2019, 124, 4934-4953.	1.0	29

#	Article	IF	CITATIONS
73	Momentum fluxes through sheared oceanic thermohaline steps. Journal of Geophysical Research, 1994, 99, 22491.	3.3	28
74	Seasonal control of Petermann Gletscher ice-shelf melt by the ocean's response to sea-ice cover in Nares Strait. Journal of Glaciology, 2017, 63, 324-330.	1.1	26
75	A 4â€decade record of elevation change of the Amery Ice Shelf, East Antarctica. Journal of Geophysical Research, 2009, 114, .	3.3	25
76	Upper ocean diapycnal mixing in the northwestern Weddell Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49, 4843-4861.	0.6	24
77	Tides on the Ross Ice Shelf observed with ICESat. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	23
78	Internal tide generation along the South Scotia Ridge. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 157-171.	0.6	23
79	Impacts of bottom corrugations on a dense Antarctic outflow: NW Ross Sea. Geophysical Research Letters, 2009, 36, .	1.5	23
80	Structure and dynamics of mesoscale eddies over the Laptev Sea continental slope in the Arctic Ocean. Ocean Science, 2018, 14, 1329-1347.	1.3	22
81	Eastern Arctic Ocean Diapycnal Heat Fluxes through Large Double-Diffusive Steps. Journal of Physical Oceanography, 2019, 49, 227-246.	0.7	22
82	Turbulent mixing in Barrow Strait. Continental Shelf Research, 1999, 19, 205-245.	0.9	21
83	A Correction to the Baroclinic Pressure Gradient Term in the Princeton Ocean Model. Journal of Atmospheric and Oceanic Technology, 2001, 18, 1068-1075.	0.5	19
84	Multidecadal Basal Melt Rates and Structure of the Ross Ice Shelf, Antarctica, Using Airborne Ice Penetrating Radar. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2019JF005241.	1.0	19
85	Richardson Number Statistics in the Seasonal Thermocline. Journal of Physical Oceanography, 1985, 15, 844-854.	0.7	18
86	Southern Ocean shelf slope exchange. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 775-777.	0.6	17
87	Persistent iceberg groundings in the western Weddell Sea, Antarctica. Remote Sensing of Environment, 2010, 114, 385-391.	4.6	17
88	Modeling Ocean Eddies on Antarctica's Cold Water Continental Shelves and Their Effects on Ice Shelf Basal Melting. Journal of Geophysical Research: Oceans, 2019, 124, 5067-5084.	1.0	14
89	Arctic tidal current atlas. Scientific Data, 2020, 7, 275.	2.4	14
90	Extracting tidal variability of sea ice concentration from AMSR-E passive microwave single-swath data: a case study of the Ross Sea. Geophysical Research Letters, 2013, 40, 547-552.	1.5	13

#	Article	IF	CITATIONS
91	Topographic vorticity waves forced by Antarctic dense shelf water outflows. Geophysical Research Letters, 2014, 41, 1247-1254.	1.5	13
92	Tidal Modulation of Buoyant Flow and Basal Melt Beneath Petermann Gletscher Ice Shelf, Greenland. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016427.	1.0	13
93	Modeled ocean circulation in <scp>N</scp> ares <scp>S</scp> trait and its dependence on landfastâ€ice cover. Journal of Geophysical Research: Oceans, 2015, 120, 7934-7959.	1.0	12
94	Tidal Pressurization of the Ocean Cavity Near an Antarctic Ice Shelf Grounding Line. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015562.	1.0	12
95	Oceanic Routing of Wind-Sourced Energy Along the Arctic Continental Shelves. Frontiers in Marine Science, 2020, 7, .	1.2	11
96	Wave inhibition by sea ice enables trans-Atlantic ice rafting of debris during Heinrich events. Earth and Planetary Science Letters, 2018, 495, 157-163.	1.8	8
97	Semidiurnal internal tides in eastern Bass Strait. Marine and Freshwater Research, 1983, 34, 159.	0.7	8
98	Influence of Sea State and Tidal Height on Wave Power Absorption. IEEE Journal of Oceanic Engineering, 2017, 42, 566-573.	2.1	7
99	Annual cycle in flow of Ross Ice Shelf, Antarctica: contribution of variable basal melting. Journal of Glaciology, 2020, 66, 861-875.	1.1	7
100	The structural and dynamic responses of Stange Ice Shelf to recent environmental change. Antarctic Science, 2014, 26, 646-660.	0.5	6
101	Flow splitting in numerical simulations of oceanic dense-water outflows. Ocean Modelling, 2017, 113, 66-84.	1.0	5
102	A clustering-based approach to ocean model–data comparison around Antarctica. Ocean Science, 2021, 17, 131-145.	1.3	5
103	Correction to "Ocean tides in the Weddell Sea: New observations on the Filchner-Ronne and Larsen C ice shelves and model validationâ€. Journal of Geophysical Research, 2011, 116, .	3.3	4
104	Buoyancyâ€Driven Flexure at the Front of Ross Ice Shelf, Antarctica, Observed With ICESatâ€2 Laser Altimetry. Geophysical Research Letters, 2021, 48, e2020GL091207.	1.5	1
105	Near-surface mixing in a freshwater lake. Marine and Freshwater Research, 1991, 42, 655.	0.7	1
106	Understanding Arctic Ocean Processes Under Changing Ice Cover. Eos, 2014, 95, 316-317.	0.1	0
107	Thank You to Our 2019 Reviewers. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016312.	1.0	0
108	Thank You to Our 2020 Reviewers. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017288.	1.0	0

#	Article	IF	CITATIONS
109	Thank You to Our 2021 Reviewers. Journal of Geophysical Research: Oceans, 2022, 127, .	1.0	O