List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8142897/publications.pdf Version: 2024-02-01

MELLIN

#	Article	IF	CITATIONS
1	Encapsulating Naphthalene in an Electron-Deficient MOF to Enhance Fluorescence for Organic Amines Sensing. Inorganic Chemistry, 2016, 55, 3680-3684.	1.9	103
2	Bay-substituted perylene bisimide dye with an undistorted planar scaffold and outstanding solid state fluorescence properties. Chemical Communications, 2012, 48, 12050.	2.2	95
3	Structure–property relationships for 1,7-diphenoxy-perylene bisimides in solution and in the solid state. Chemical Science, 2014, 5, 608-619.	3.7	94
4	A panchromatic hybrid crystal of iodoplumbate nanowires and J-aggregated naphthalene diimides with long-lived charge-separated states. Dalton Transactions, 2015, 44, 5957-5960.	1.6	76
5	Luminescent Coordination Polymer with Conjugated Lewis Acid Sites for the Detection of Organic Amines. Crystal Growth and Design, 2015, 15, 5040-5046.	1.4	73
6	Anion-Mediated Architecture and Photochromism of Rigid Bipyridinium-Based Coordination Polymers. Crystal Growth and Design, 2016, 16, 2836-2842.	1.4	73
7	Perylene Bisimide Radicals and Biradicals: Synthesis and Molecular Properties. Angewandte Chemie - International Edition, 2015, 54, 13980-13984.	7.2	65
8	Halochromic Phenolate Perylene Bisimides with Unprecedented NIR Spectroscopic Properties. Angewandte Chemie - International Edition, 2011, 50, 10847-10850.	7.2	59
9	Photoexcited perylene diimide radical anions for the reduction of aryl halides: a bay-substituent effect. Organic Chemistry Frontiers, 2018, 5, 2296-2302.	2.3	56
10	A photochromic naphthalene diimide coordination network sensitized by polyoxometalates. Dalton Transactions, 2014, 43, 17908-17911.	1.6	53
11	Molecular tectonics: modulation of size and shape of cuboid 3-D coordination networks. CrystEngComm, 2009, 11, 189-191.	1.3	50
12	The impact of lone pairâ€"ï€ interactions on photochromic properties in 1-D naphthalene diimide coordination networks. Dalton Transactions, 2015, 44, 17312-17317.	1.6	48
13	Two-semiconductive-component hybrid coordination polymers with controllable photo-induced electron-transfer properties. Dalton Transactions, 2016, 45, 6339-6342.	1.6	47
14	Lone pair–π interaction-induced generation of non-interpenetrated and photochromic cuboid 3-D naphthalene diimide coordination networks. Dalton Transactions, 2015, 44, 653-658.	1.6	46
15	Construction of a bicontinuous donor–acceptor hybrid material at the molecular level by inserting inorganic nanowires into porous MOFs. Chemical Communications, 2017, 53, 4481-4484.	2.2	41
16	Cooperative lone pair–π and coordination interactions in naphthalene diimide coordination networks. CrystEngComm, 2014, 16, 9090-9095.	1.3	40
17	Photogeneration of two reduction-active charge-separated states in a hybrid crystal of polyoxometalates and naphthalene diimides. Dalton Transactions, 2015, 44, 484-487.	1.6	38
18	Assembly of donor–acceptor hybrid heterostructures based on iodoplumbates and viologen coordination polymers. Dalton Transactions, 2017, 46, 11556-11560.	1.6	38

#	Article	IF	CITATIONS
19	Molecular Engineering of Perylene Imides for Highâ€Performance Lithium Batteries: Diels–Alder Extension and Chiral Dimerization. Chemistry - A European Journal, 2017, 23, 16612-16620.	1.7	35
20	Molecular tectonics: control of interpenetration in cuboid 3-D coordination networks. CrystEngComm, 2011, 13, 776-778.	1.3	34
21	Switching on room-temperature phosphorescence of photochromic hybrid heterostructures by anion-Ï€ interactions. Dyes and Pigments, 2020, 173, 107943.	2.0	34
22	Photochromism and photomagnetism in three cyano-bridged 3d–4f heterobimetallic viologen frameworks. Dalton Transactions, 2021, 50, 4959-4966.	1.6	31
23	Two novel donor–acceptor hybrid heterostructures with enhanced visible-light photocatalytic properties. Dalton Transactions, 2018, 47, 12041-12045.	1.6	26
24	<scp>C</scp> harge transport through perylene bisimide molecular junctions: An electrochemical approach. Physica Status Solidi (B): Basic Research, 2013, 250, 2458-2467.	0.7	25
25	Cocrystals of naphthalene diimide with naphthalene derivatives: A facile approach to tune the luminescent properties. Dyes and Pigments, 2018, 149, 59-64.	2.0	25
26	Biomimetic donor-acceptor motifs in carbon nitrides: Enhancing red-light photocatalytic selective oxidation by rational surface engineering. Applied Catalysis B: Environmental, 2021, 294, 120259.	10.8	25
27	Anion–π interactions in lithium–organic redox flow batteries. Chemical Communications, 2019, 55, 2364-2367.	2.2	24
28	Three-component D–A hybrid heterostructures with enhanced photochromic, photomodulated luminescence and selective anion-sensing properties. Dalton Transactions, 2020, 49, 13083-13089.	1.6	24
29	Designing a highly stable coordination-driven metallacycle for imaging-guided photodynamic cancer theranostics. Chemical Science, 2020, 11, 7940-7949.	3.7	23
30	A Laterally Extended Perylene Hexacarboxylate via Diels-Alder Reaction for High-Performance Organic Lithium-Ion Batteries. Electrochimica Acta, 2017, 254, 255-261.	2.6	22
31	Stable Bifunctional Perylene Imide Radicals for Highâ€Performance Organic–Lithium Redoxâ€Flow Batteries. Chemistry - A European Journal, 2018, 24, 13188-13196.	1.7	22
32	An electron-deficient nanosized polycyclic aromatic hydrocarbon with enhanced anion–π interactions. Chemical Communications, 2018, 54, 11941-11944.	2.2	21
33	Intramolecular Energy and Solventâ€Dependent Chirality Transfer within a BINOLâ€Perylene Heteroâ€Cyclophane. Angewandte Chemie - International Edition, 2022, 61, .	7.2	21
34	An electron-deficient metallocavitand with an unusual selectivity towards substituted benzene derivatives during co-crystallizations. Chemical Communications, 2013, 49, 11512.	2.2	20
35	Selectivity enhancement of quaternized poly(arylene ether ketone) membranes by ion segregation for vanadium redox flow batteries. Science China Chemistry, 2019, 62, 479-490.	4.2	20
36	The impact of metal cations on the photochemical properties of hybrid heterostructures with infinite alkaline-earth metal oxide clusters. Dalton Transactions, 2019, 48, 17381-17387.	1.6	20

#	Article	IF	CITATIONS
37	Tetra-alkylsulfonate functionalized poly(aryl ether) membranes with nanosized hydrophilic channels for efficient proton conduction. Journal of Energy Chemistry, 2020, 40, 57-64.	7.1	20
38	Transition metal complexes of axially chiral tetrathioether bay-substituted perylene bisimide dyes. Chemical Communications, 2013, 49, 9107.	2.2	19
39	Photochromic and Room Temperature Phosphorescent Donor–Acceptor Hybrid Crystals Regulated by Core-Substituted Naphthalenediimides. Inorganic Chemistry, 2021, 60, 16233-16240.	1.9	19
40	The effect of protonation on the spectra and stabilities of alkoxyl substituted phthalocyaninatometals. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 71, 1188-1192.	2.0	18
41	Photochromic and Room-Temperature Phosphorescent D–A Hybrid Crystals Induced by Anionâ^ï€ Interactions. Crystal Growth and Design, 2021, 21, 3511-3520.	1.4	18
42	From achiral tetrazolate-based tectons to chiral coordination networks: effects of substituents on the structures and NLO properties. CrystEngComm, 2013, 15, 8180.	1.3	17
43	A heterometallic D–A hybrid heterostructural framework with enhanced visible-light photocatalytic properties. CrystEngComm, 2020, 22, 420-424.	1.3	17
44	An AIE-Active conjugated macrocyclic tetramaleimide for "Turn-On―far red/near-infrared fluorescent bioimaging. Dyes and Pigments, 2021, 190, 109324.	2.0	16
45	Crystal Structure of Octaethyloxyphthalocyaninato Copper, the Overlap Affect on the Ring Skeleton Distortion. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2005, 631, 1352-1354.	0.6	15
46	Structural insights into the aggregation-induced emission mechanism of naphthalene diimide solids. Dyes and Pigments, 2017, 145, 469-475.	2.0	15
47	The impact of vertical ï€-extension on redox mechanisms of aromatic diimide dyes. Chinese Chemical Letters, 2019, 30, 2254-2258.	4.8	15
48	A Three-Component Donor–Acceptor Hybrid Framework with Low-Power X-ray-Induced Photochromism. Inorganic Chemistry, 2022, 61, 8153-8159.	1.9	15
49	Donor–Acceptor Hybrid Heterostructures: An Emerging Class of Photoactive Materials with Inorganic and Organic Semiconductive Components. Small, 2022, 18, e2201159.	5.2	15
50	Effect of non-peripheral alkyloxy substituents on the structure and spectroscopic properties of metal-free phthalocyanines. Journal of Molecular Structure, 2007, 837, 284-289.	1.8	14
51	Controlling molecular packing via diffusion methods for enhanced photochromic properties in D-A hybrid heterostructures. Dyes and Pigments, 2021, 186, 109027.	2.0	14
52	Enantioselective Recognition of Helicenes by a Tailored Chiral Benzo[ghi]perylene Trisimide π‣caffold. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
53	1,15-Bis-(2′,2′,4′-trimethyl-3′-pentoxy)phthalocyanine, a trans-form nonperipheral di-substituted phthalocyanine synthesized by the â€̃cross condensation' method. Journal of Organometallic Chemistry, 2006, 691, 5074-5076.	0.8	13
54	Cooperative effect of anion-ï€ and electrostatic interactions in NIR absorbing phenolate naphthalene diimide conjugates. Dyes and Pigments, 2015, 113, 251-256.	2.0	13

#	Article	IF	CITATIONS
55	Unprecedented five-fold interpenetrated donor–acceptor hybrid heterostructure induced by anion–π interactions. CrystEngComm, 2019, 21, 6688-6692.	1.3	13
56	Fluorinated poly(fluorenyl ether)s with linear multi-cationic side chains for vanadium redox flow batteries. Science China Materials, 2021, 64, 349-361.	3.5	13
57	A convenient synthesis of a substituted phthalocyanine compound. Journal of Coordination Chemistry, 2006, 59, 607-611.	0.8	12
58	Naphthalene diimide cocrystals: A facile approach to tune the optical properties. Dyes and Pigments, 2015, 113, 318-324.	2.0	12
59	A Triphenylphosphonium Functionalized <scp>AIE</scp> Conjugated Macrocyclic Tetramaleimide for Mitochondrialâ€ŧargeting Bioimaging. Chinese Journal of Chemistry, 2022, 40, 39-45.	2.6	12
60	Electron-deficient naphthalene diimides as efficient planar π-acid organocatalysts for selective oxidative C–C coupling of 2,6-di-tert-butylphenol: A temperature effect. Journal of Molecular Catalysis A, 2014, 385, 26-30.	4.8	11
61	Impact of diffusion methods and metal cations on photochromic three-component D–A hybrid heterostructures. Dalton Transactions, 2020, 49, 12411-12417.	1.6	11
62	Photochromic Polyoxometalate/Perylenediimide Donor–Acceptor Hybrid Crystals with Interesting Luminescent Properties. Inorganic Chemistry, 2022, 61, 105-112.	1.9	11
63	7, 8-Dichlorobenzo[ghi]perylenetriimide: A versatile synthon for bay-substituted π-extended perylene dyes. Dyes and Pigments, 2019, 167, 83-88.	2.0	10
64	Construction of Novel Polyoxometalate/Perylenediimide Hybrid Heterostructures for Enhanced Photocatalytic Oxidation of Mustard Gas Simulants. Crystal Growth and Design, 2021, 21, 4738-4745.	1.4	10
65	The chemical stabilities of phthalocyanine monomers vs. aggregations. Journal of Molecular Catalysis A, 2013, 372, 100-104.	4.8	9
66	Coordination polymers of tetrazole-yl acylamide with octahedrally coordinated divalent transition metals: the effects of metal centers and side-groups on the structural topologies and symmetries. CrystEngComm, 2013, 15, 4830.	1.3	9
67	Persistent radical anions in panchromatic D-A hybrid heterostructures induced by anion-Ï€ interactions. Dyes and Pigments, 2020, 180, 108468.	2.0	9
68	Photochromic and photocontrolled luminescent rare-earth D–A hybrid crystals based on rigid viologen acceptors. CrystEngComm, 2021, 23, 6267-6275.	1.3	9
69	In-situ construction of novel naphthalenediimide/metal-iodide hybrid heterostructures for enhanced photoreduction of Cr (VI). Dyes and Pigments, 2021, 187, 109146.	2.0	9
70	Donorâ€Acceptor Conjugated Heptazine Polymers with Highly Efficient Photocatalytic Degradations towards Tetracyclines. Macromolecular Rapid Communications, 2021, 42, e2100577.	2.0	9
71	Different conformations of phthalocyanine skeletons in a structure of μ-oxo-bis(phthalocyaninato)iron with asymmetry coordination. Inorganic Chemistry Communication, 2005, 8, 900-902.	1.8	8
72	Molecular tectonics: chaining cages into a 1-D coordination network. CrystEngComm, 2010, 12, 67-69.	1.3	8

#	Article	IF	CITATIONS
73	Hydrothermal synthesis of benzothiazole–carboxylic cadmium(<scp>ii</scp>) coordination networks: pH-controlled topologies and compositional distributions. CrystEngComm, 2013, 15, 343-348.	1.3	8
74	Lone pair–π interactions in naphthalene diimide π-acid dyes. Supramolecular Chemistry, 2015, 27, 460-464.	1.5	8
75	Photochromism- and Photoluminescence-Tunable Heterobimetallic Supramolecular Hybrid Isomers. Crystal Growth and Design, 2021, 21, 2856-2867.	1.4	8
76	1,1′-Binaphthol annulated perylene diimides: Aggregation-induced emission enhancement and chirality inversion. Chinese Chemical Letters, 2022, 33, 2473-2476.	4.8	8
77	Interpenetration of Donor–Acceptor Hybrid Frameworks for Highly Sensitive Thermal Sensors. ACS Applied Materials & Interfaces, 2022, 14, 24575-24582.	4.0	8
78	The catassembled generation of naphthalene diimide coordination networks with lone pair-Ï€ interactions. Science China Chemistry, 2016, 59, 1492-1497.	4.2	7
79	1,1′-Bi(2-naphthol-4,5-dicarboximide)s: blue emissive axially chiral scaffolds with aggregation-enhanced emission properties. Organic Chemistry Frontiers, 2019, 6, 3731-3740.	2.3	7
80	Mixed-metal metallocavitands: a new approach to tune their electrostatic potentials for controllable selectivity towards substituted benzene derivatives. Dalton Transactions, 2015, 44, 9370-9374.	1.6	6
81	Naphthalene Diimide Templated Synthesis of Pillar[6]arenes. Chinese Journal of Chemistry, 2015, 33, 339-342.	2.6	6
82	Structural design of small-molecule carbon-nitride dyes for photocatalytic hydrogen evolution. Dyes and Pigments, 2021, 185, 108946.	2.0	6
83	Enantioselective Recognition of Helicenes by a Tailored Chiral Benzo[ghi]perylene Trisimide Ï€â€Scaffold. Angewandte Chemie, 2022, 134, .	1.6	6
84	Spectra and stabilities of α-substituted phthalocyaninatoirons. Journal of Molecular Catalysis A, 2006, 253, 25-29.	4.8	5
85	The spectra and stabilities of alkoxyl-substituted phthalocyaninatometals. Journal of Molecular Catalysis A, 2007, 273, 156-159.	4.8	5
86	Dynamic covalent synthesis of conjugated macrocyclic maleimides with interesting solvatochromic luminescent properties. Dyes and Pigments, 2022, 198, 110031.	2.0	5
87	Discrete polynuclear manganese nanorods: syntheses, crystal structures and magnetic properties. RSC Advances, 2014, 4, 40958-40963.	1.7	4
88	Encapsulating third donors into D–A hybrid heterostructures to form three-component charge-transfer complexes for enhanced electrical properties. Dalton Transactions, 2021, 50, 13961-13967.	1.6	4
89	The crystal structure of octakispentoxy-phthalocyaninatocopper with pyridines axially substituted: the molecules stacked with J-aggregates. Journal of Coordination Chemistry, 2007, 60, 1479-1484.	0.8	3
90	Lanthanide contraction in linear lanthanide–oxygen clusters. Journal of Coordination Chemistry, 2014, 67, 3542-3550.	0.8	3

#	Article	IF	CITATIONS
91	A bicontinuous donor–acceptor hybrid heterostructure based on coordination and cation–π interactions. CrystEngComm, 2018, 20, 7795-7801.	1.3	3
92	Intramolecular Energy and Solventâ€dependent Chirality Transfer within a BINOLâ€Perylene Heteroâ€Cyclophane. Angewandte Chemie, 0, , .	1.6	3
93	2-Carboxy-6-(quinolin-1-ium-8-yloxy)benzoate. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o1351-o1351.	0.2	2
94	Four isostructural lanthanide(III) coordination compounds based on a new <i>N</i> -oxydic pyridyl naphthalenediimide ligand: synthesis and characterization. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 38-45.	0.2	2
95	Syntheses and structures of discrete copper(II) and cadmium(II) supramolecular complexes based on 1,4-diacylthiosemicarbazone ligands. Acta Crystallographica Section C, Structural Chemistry, 2016, 72, 119-123.	0.2	1
96	Superhydrophobic coatings based on thermally and chemically stable fluorinated poly(aryl) Tj ETQq0 0 0 rgBT /O	verlock 10 1.2	0 Tf ₁ 50 542 To
97	Two Face Diagonally Linked Cuboid Coordination Networks with Enhanced Thermal Stability. Crystal Growth and Design, 2022, 22, 1384-1389.	1.4	1

98 Synthesis and characterization of viologen functionalized fluorene-containing poly(arylene ether) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 4

99	Donor-acceptor conjugated heptazine polymers: Boosting the Cr(VI) photoreductions via heteroatom engineering. Materials Today Communications, 2022, 31, 103825.	0.9	1	
----	---	-----	---	--