
Villar-Cociña, E

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/814247/publications.pdf Version: 2024-02-01

 $V_{IIIAP}COCIÃ+AF$

#	Article	IF	CITATIONS
1	A Comparative Study on the Pozzolanic Activity Between Bamboo Leaves Ash and Silica Fume: Kinetic Parameters. Waste and Biomass Valorization, 2020, 11, 1627-1634.	3.4	20
2	Potential use of sugarcane bagasse and bamboo leaf ashes for elaboration of green cementitious materials. Journal of Cleaner Production, 2019, 231, 54-63.	9.3	64
3	Pozzolanic Characterization of Cuban Bamboo Leaf Ash: Calcining Temperature and Kinetic Parameters. Waste and Biomass Valorization, 2018, 9, 691-699.	3.4	22
4	Effect of a high content in activated carbon waste on low clinker cement microstructure and properties. Construction and Building Materials, 2018, 184, 11-19.	7.2	20
5	Advances on the development of ternary cements elaborated with biomass ashes coming from different activation process. Construction and Building Materials, 2017, 136, 73-80.	7.2	24
6	New trends for nonconventional cement-based materials. , 2017, , 165-183.		6
7	Mineralogical study of calcined coal waste in a pozzolan/Ca(OH)2 system. Applied Clay Science, 2015, 108, 45-54.	5.2	30
8	THERMAL AND CHEMICAL TREATMENTS FOR REMOVAL OF ALKALI OXIDES OF ELEPHANT GRASS ASHES. Quimica Nova, 2014, , .	0.3	3
9	Evolution of the pozzolanic activity of a thermally treated zeolite. Journal of Materials Science, 2013, 48, 3213-3224.	3.7	27
10	Pozzolanic behaviour of a bagasse ash from the boiler of a Cuban sugar factory. Advances in Cement Research, 2013, 25, 136-142.	1.6	18
11	Characterization and properties of blended cement matrices containing activated bamboo leaf wastes. Cement and Concrete Composites, 2012, 34, 1019-1023.	10.7	97
12	Pozzolanic behavior of bamboo leaf ash: Characterization and determination of the kinetic parameters. Cement and Concrete Composites, 2011, 33, 68-73.	10.7	136
13	Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture. Cement and Concrete Composites, 2011, 33, 490-496.	10.7	206
14	Study on the pozzolanic properties of a natural Cuban zeolitic rock by conductometric method: Kinetic parameters. Construction and Building Materials, 2011, 25, 644-650.	7.2	31
15	A kinetic study about the pozzolanic reactivity of loessic soils by conductometric methods: kinetic parameters. Advances in Cement Research, 2011, 23, 3-10.	1.6	3
16	Kinetic parameters during the tempering of low-alloy steel through the non-isothermal dilatometry. Journal of Materials Science, 2010, 45, 418-428.	3.7	28
17	Influence of activation temperature of kaolinite-based clay wastes on pozzolanic activity and kinetic parameters. Advances in Cement Research, 2010, 22, 135-142.	1.6	18
18	Study of the pozzolanic reaction kinetics in sugar cane bagasse–clay ash/calcium hydroxide system: kinetic parameters and pozzolanic activity. Advances in Cement Research, 2009, 21, 23-30.	1.6	20

Villar-Cociña, E

#	Article	IF	CITATIONS
19	Pozzolanic activity and alkaline reactivity of a mordenite-rich tuff. Microporous and Mesoporous Materials, 2009, 126, 125-132.	4.4	20
20	Effects of calcining conditions on the microstructure of sugar cane waste ashes (SCWA): Influence in the pozzolanic activation. Cement and Concrete Composites, 2009, 31, 22-28.	10.7	95
21	Influence of calcining temperature on the activation of sugar-cane bagasse: kinetic parameters. Advances in Cement Research, 2007, 19, 109-115.	1.6	28
22	Characterisation of sugar cane straw waste as pozzolanic material for construction: Calcining temperature and kinetic parameters. Waste Management, 2007, 27, 533-538.	7.4	115
23	An evaluation of different kinetic models for determining the kinetic coefficients in sugar cane straw–clay ash/lime system. Advances in Cement Research, 2006, 18, 17-26.	1.6	32
24	The effect that different pozzolanic activity methods has on the kinetic constants of the pozzolanic reaction in sugar cane straw-clay ash/lime systems: Application of a kinetic–diffusive model. Cement and Concrete Research, 2005, 35, 2137-2142.	11.0	60
25	Kinetics of the water absorption in GGBS-concretes: A capillary-diffusive model. Computers and Concrete, 2005, 2, 19-30.	0.7	2
26	Validación de un modelo cinético-difusivo para caracterizar la cinética de reacción puzolánica en sistemas cenizas de paja de caña-arcilla/cal. Materiales De Construccion, 2005, 55, 29-40.	0.7	4
27	Kinetic theory of the overlapping phase transformations: case of the dilatometric method. Acta Materialia, 2004, 52, 1083-1088.	7.9	15
28	Kinetics of the pozzolanic reaction between lime and sugar cane straw ash by electrical conductivity measurement: A kinetic–diffusive model. Cement and Concrete Research, 2003, 33, 517-524.	11.0	80
29	Difusión de humedad en mezclas de moldeo para machos de fundición. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2002, 41, 253-258.	1.9	4
30	Influencia de la humedad en el comportamiento de la resistencia a la compresión en mezclas de moldeo. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2001, 40, 107-111.	1.9	5