
Anna Salvetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8142334/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RNA helicase DDX5 enables STAT1 mRNA translation and interferon signalling in hepatitis B virus replicating hepatocytes. Gut, 2022, 71, 991-1005.	12.1	23
2	Loss of hepatitis D virus infectivity upon farnesyl transferase inhibitor treatment associates with increasing RNA editing rates revealed by a new RT-ddPCR method. Antiviral Research, 2022, 198, 105250.	4.1	11
3	Inducers of the NF-κB pathways impair hepatitis delta virus replication and strongly decrease progeny infectivity inÂvitro. JHEP Reports, 2022, 4, 100415.	4.9	3
4	Inhibitory Effect of IL- $1\hat{1}^2$ on HBV and HDV Replication and HBs Antigen-Dependent Modulation of Its Secretion by Macrophages. Viruses, 2022, 14, 65.	3.3	6
5	Optical Quantification by Nanopores of Viruses, Extracellular Vesicles, and Nanoparticles. Nano Letters, 2022, 22, 3651-3658.	9.1	4
6	Interplay Between CMGC Kinases Targeting SR Proteins and Viral Replication: Splicing and Beyond. Frontiers in Microbiology, 2021, 12, 658721.	3.5	9
7	Reduced Expression of Hippocampal GluN2A-NMDAR Increases Seizure Susceptibility and Causes Deficits in Contextual Memory. Frontiers in Neuroscience, 2021, 15, 644100.	2.8	17
8	SRSF10: an atypical splicing regulator with critical roles in stress response, organ development, and viral replication. Rna, 2021, 27, 1302-1317.	3.5	11
9	Evidence for long-term association of virion-delivered HBV core protein with cccDNA independently of viral protein production. JHEP Reports, 2021, 3, 100330.	4.9	10
10	Stiffness heterogeneity of small viral capsids. Physical Review E, 2021, 104, 064408.	2.1	3
11	Fast Differentiation of HepaRG Cells Allowing Hepatitis B and Delta Virus Infections. Cells, 2020, 9, 2288.	4.1	7
12	Neuronal expression of a singleâ€chain variable fragment antibody against Aβ oligomers protects synapses and rescues memory in Alzheimer models. Alzheimer's and Dementia, 2020, 16, e041530.	0.8	0
13	Hepatitis B virus Core protein nuclear interactome identifies SRSF10 as a host RNA-binding protein restricting HBV RNA production. PLoS Pathogens, 2020, 16, e1008593.	4.7	28
14	Antiviral Activity of PLK1-Targeting siRNA Delivered by Lipid Nanoparticles in HBV-Infected Hepatocytes. Antiviral Therapy, 2020, 25, 151-162.	1.0	7
15	Capsid Engineering Overcomes Barriers Toward Adeno-Associated Virus Vector-Mediated Transduction of Endothelial Cells. Human Gene Therapy, 2019, 30, 1284-1296.	2.7	23
16	Hepatitis B virus-induced modulation of liver macrophage function promotes hepatocyte infection. Journal of Hepatology, 2019, 71, 1086-1098.	3.7	62
17	Vector uncoating limits adeno-associated viral vector-mediated transduction of human dendritic cells and vector immunogenicity. Scientific Reports, 2019, 9, 3631.	3.3	57

18 ADENO-ASSOCIATED VIRUS (AAV) VECTORS. , 2019, , 167-180.

#	Article	IF	CITATIONS
19	Characterization of AAV vector particle stability at the single-capsid level. Journal of Biological Physics, 2018, 44, 181-194.	1.5	53
20	Direct antiviral properties of TLR ligands against HBV replication in immune-competent hepatocytes. Scientific Reports, 2018, 8, 5390.	3.3	57
21	Investigating the neuroprotective effect of AAV-mediated \hat{l}^2 -synuclein overexpression in a transgenic model of synucleinopathy. Scientific Reports, 2018, 8, 17563.	3.3	4
22	Antiviral properties and liver specific delivery of a TLR1/2 ligand in HBV-infected in vitro and in vivo models. Journal of Hepatology, 2018, 68, S772.	3.7	0
23	Identification of hepatitis B virus core protein nuclear interacting factors points to RNA binding proteins as major regulators of HBV replication. Journal of Hepatology, 2018, 68, S766.	3.7	0
24	Characterization of Pattern Recognition Receptor Expression and Functionality in Liver Primary Cells and Derived Cell Lines. Journal of Innate Immunity, 2018, 10, 339-348.	3.8	36
25	Detection of the hepatitis B virus (HBV) covalently-closed-circular DNA (cccDNA) in mice transduced with a recombinant AAV-HBV vector. Antiviral Research, 2017, 145, 14-19.	4.1	49
26	Herpes simplex virus 1 induces egress channels through marginalized host chromatin. Scientific Reports, 2016, 6, 28844.	3.3	53
27	Nuclear Functions of Nucleolin through Global Proteomics and Interactomic Approaches. Journal of Proteome Research, 2016, 15, 1659-1669.	3.7	48
28	Oral-tolerization Prevents Immune Responses and Improves Transgene Persistence Following Gene Transfer Mediated by Adeno-associated Viral Vector. Molecular Therapy, 2016, 24, 87-95.	8.2	15
29	Impact of the MRN Complex on Adeno-Associated Virus Integration and Replication during Coinfection with Herpes Simplex Virus 1. Journal of Virology, 2015, 89, 6824-6834.	3.4	11
30	AAV Vectors Vaccines Against Infectious Diseases. Frontiers in Immunology, 2014, 5, 5.	4.8	83
31	Hepatitis B virus infection enhances susceptibility toward adeno-associated viral vector transduction <i>in vitro</i> and <i>in vivo</i> . Hepatology, 2014, 59, 2110-2120.	7.3	19
32	Viruses and the nucleolus: The fatal attraction. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 840-847.	3.8	88
33	10: ADENO-ASSOCIATED VIRUS (AAV) VECTORS. ICP Textbooks in Biomolecular Sciences, 2014, , 151-164.	0.1	0
34	Protection Against Henipavirus Infection by Use of Recombinant Adeno-Associated Virus–Vector Vaccines. Journal of Infectious Diseases, 2013, 207, 469-478.	4.0	72
35	Les vecteurs AAV pour le transfert de gène in vivo ou comment un petit virus devient grand. Virologie, 2013, 17, 343-353.	0.1	0
36	Adeno-Associated Virus Type 2 Modulates the Host DNA Damage Response Induced by Herpes Simplex Virus 1 during Coinfection. Journal of Virology, 2012, 86, 143-155.	3.4	27

#	Article	IF	CITATIONS
37	Factors influencing helper-independent adeno-associated virus replication. Virology, 2012, 432, 1-9.	2.4	8
38	Immunological Tolerance to Muscle Autoantigens Involves Peripheral Deletion of Autoreactive CD8+ T Cells. PLoS ONE, 2012, 7, e36444.	2.5	9
39	Improved Immunological Tolerance Following Combination Therapy with CTLA-4/Ig and AAV-Mediated PD-L1/2 Muscle Gene Transfer. Frontiers in Microbiology, 2011, 2, 199.	3.5	18
40	Identification of Rep-Associated Factors in Herpes Simplex Virus Type 1-Induced Adeno-Associated Virus Type 2 Replication Compartments. Journal of Virology, 2010, 84, 8871-8887.	3.4	22
41	Inhibition of Herpes Simplex Virus Type 1 Replication by Adeno-Associated Virus Rep Proteins Depends on Their Combined DNA-Binding and ATPase/Helicase Activities. Journal of Virology, 2010, 84, 3808-3824.	3.4	21
42	Stable Producer Cell Lines for Adeno-Associated Virus (AAV) Assembly. Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5496.	0.3	6
43	Definition of Herpes Simplex Virus Type 1 Helper Activities for Adeno-Associated Virus Early Replication Events. PLoS Pathogens, 2009, 5, e1000340.	4.7	42
44	Relative Influence of the Adeno-Associated Virus (AAV) Type 2 p5 Element for Recombinant AAV Vector Site-Specific Integration. Journal of Virology, 2008, 82, 2590-2593.	3.4	4
45	Impact of the Interaction between Herpes Simplex Virus Type 1 Regulatory Protein ICPO and Ubiquitin-Specific Protease USP7 on Activation of Adeno-Associated Virus Type 2 rep Gene Expression. Journal of Virology, 2006, 80, 3650-3654.	3.4	11
46	Efficiency of adeno-associated virus type-2 vectors in non-human primate Schwann cells. NeuroReport, 2005, 16, 1757-1762.	1.2	3
47	Intracellular route and biological activity of exogenously delivered Rep proteins from the adeno-associated virus type 2. Virology, 2005, 335, 252-263.	2.4	6
48	Helper Functions Required for Wild Type and Recombinant Adeno- Associated Virus Growth. Current Gene Therapy, 2005, 5, 265-271.	2.0	70
49	Evidence for Encapsidation of Prokaryotic Sequences during Recombinant Adeno-Associated Virus Production and Their in Vivo Persistence after Vector Delivery. Molecular Therapy, 2005, 12, 744-753.	8.2	81
50	The Cellular TATA Binding Protein Is Required for Rep-Dependent Replication of a Minimal Adeno-Associated Virus Type 2 p5 Element. Journal of Virology, 2005, 79, 11082-11094.	3.4	25
51	Herpes Simplex Virus Type 1 ICPO Protein Mediates Activation of Adeno-Associated Virus Type 2 rep Gene Expression from a Latent Integrated Form. Journal of Virology, 2004, 78, 10977-10986.	3.4	23
52	Improving rAAV production and purification: towards the definition of a scaleable process. Journal of Gene Medicine, 2004, 6, S223-S228.	2.8	53
53	Identification of a replication-defective herpes simplex virus for recombinant adeno-associated virus type 2(rAAV2) particle assembly using stable producer cell lines. Journal of Gene Medicine, 2004, 6, 555-564.	2.8	28
54	Evidence for Packaging of rep-cap Sequences into Adeno-Associated Virus (AAV) Type 2 Capsids in the Absence of Inverted Terminal Repeats: a Model for Generation of rep -Positive AAV Particles. Journal of Virology, 2003, 77, 776-781.	3.4	48

#	Article	IF	CITATIONS
55	Lack of an Immune Response against the Tetracycline-Dependent Transactivator Correlates with Long-Term Doxycycline-Regulated Transgene Expression in Nonhuman Primates after Intramuscular Injection of Recombinant Adeno-Associated Virus. Journal of Virology, 2002, 76, 11605-11611.	3.4	137
56	A Versatile and Scalable Two-Step Ion-Exchange Chromatography Process for the Purification of Recombinant Adeno-associated Virus Serotypes-2 and -5. Molecular Therapy, 2002, 6, 678-686.	8.2	35
57	Phenotypic rescue after adeno-associated virus-mediated delivery of 4-sulfatase to the retinal pigment epithelium of feline mucopolysaccharidosis VI. Journal of Gene Medicine, 2002, 4, 613-621.	2.8	38
58	A Versatile and Scalable Two-Step Ion-Exchange Chromatography Process for the Purification of Recombinant Adeno-associated Virus Serotypes-2 and -5. Molecular Therapy, 2002, 6, 678-686.	8.2	81
59	The Journal ofGene Medicine 2000 Young Investigator Award. Journal of Gene Medicine, 2001, 3, 96-97.	2.8	0
60	Novel cis -Acting Replication Element in the Adeno-Associated Virus Type 2 Genome Is Involved in Amplification of Integrated rep-cap Sequences. Journal of Virology, 2001, 75, 9991-9994.	3.4	47
61	Immediate and Long-Term Safety of Recombinant Adeno-associated Virus Injection into the Nonhuman Primate Muscle. Molecular Therapy, 2001, 4, 559-566.	8.2	112
62	Characterization of Adenovirus-Induced Inverted Terminal Repeat-Independent Amplification of Integrated Adeno-Associated Virus rep-cap Sequences. Journal of Virology, 2001, 75, 375-383.	3.4	31
63	Efficient recombinant adeno-associated virus production by a stable rep-cap HeLa cell line correlates with adenovirus-induced amplification of the integrated rep-cap genome. Journal of Gene Medicine, 2000, 2, 260-268.	2.8	81
64	Hyaluronidase enhances recombinant adeno-associated virus (rAAV)-mediated gene transfer in the rat skeletal muscle. Gene Therapy, 2000, 7, 1417-1420.	4.5	44
65	Improvement of erythropoiesis in β-thalassemic mice by continuous erythropoietin delivery from muscle. Blood, 2000, 95, 2793-2798.	1.4	59
66	Functional Characterization of Adenoviral/Retroviral Chimeric Vectors and Their Use for Efficient Screening of Retroviral Producer Cell Lines. Human Gene Therapy, 1999, 10, 189-200.	2.7	58
67	ANALYSIS OF GENE TRANSFER EFFICACY IN RAT ISLETS WITH ADENO VIRUS, ADENO-ASSOCIATED VIRUS AND BACULOVIRUS Transplantation, 1999, 67, S63.	1.0	0
68	Factors Influencing Recombinant Adeno-Associated Virus Production. Human Gene Therapy, 1998, 9, 695-706.	2.7	239
69	Control of Erythropoietin Delivery by Doxycycline in Mice After Intramuscular Injection of Adeno-Associated Vector. Blood, 1998, 92, 1512-1517.	1.4	118
70	Control of Erythropoietin Delivery by Doxycycline in Mice After Intramuscular Injection of Adeno-Associated Vector. Blood, 1998, 92, 1512-1517.	1.4	33
71	Gene Transfer into the Kidney: Current Status and Limitations. Nephron, 1997, 77, 139-151.	0.6	7
72	Gene theraphy of lysosomal storage disorders. British Medical Bulletin, 1995, 51, 106-122.	6.9	19

#	Article	IF	CITATIONS
73	Delivery of therapeutic proteins from genetically-modified cells. Restorative Neurology and Neuroscience, 1995, 8, 67-69.	0.7	0
74	Functional Retroviral Vector for Gene Therapy of Xeroderma Pigmentosum Group D Patients. Human Gene Therapy, 1995, 6, 1307-1315.	2.7	54
75	In VivoDelivery of Humanα-l-Iduronidase in Mice Implanted with Neo-Organs. Human Gene Therapy, 1995, 6, 1153-1159.	2.7	19
76	Identification of a negative element in the human vimentin promoter: modulation by the human T-cell leukemia virus type I Tax protein Molecular and Cellular Biology, 1993, 13, 89-97.	2.3	37