
Wei Wei Xiong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8142324/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TheÂRppC-AvrRppC NLR-effector interaction mediates the resistance to southern corn rust inÂmaize. Molecular Plant, 2022, 15, 904-912.	3.9	31
2	The optimization of conservation agriculture practices requires attention to location-specific performance: Evidence from large scale gridded simulations across South Asia. Field Crops Research, 2022, 282, 108508.	2.3	8
3	Climate impact and adaptation to heat and drought stress of regional and global wheat production. Environmental Research Letters, 2021, 16, 054070.	2.2	52
4	Harnessing translational research in wheat for climate resilience. Journal of Experimental Botany, 2021, 72, 5134-5157.	2.4	28
5	Increased ranking change in wheat breeding under climate change. Nature Plants, 2021, 7, 1207-1212.	4.7	37
6	Contrasting contributions of five factors to wheat yield growth in China by process-based and statistical models. European Journal of Agronomy, 2021, 130, 126370.	1.9	11
7	Comparisons among four different upscaling strategies for cultivar genetic parameters in rainfed spring wheat phenology simulations with the DSSAT-CERES-Wheat model. Agricultural Water Management, 2021, 258, 107181.	2.4	9
8	Different uncertainty distribution between high and low latitudes in modelling warming impacts on wheat. Nature Food, 2020, 1, 63-69.	6.2	43
9	Better Agronomic Management Increases Climate Resilience of Maize to Drought in Tanzania. Atmosphere, 2020, 11, 982.	1.0	7
10	A consistent calibration across three wheat models to simulate wheat yield and phenology in China. Ecological Modelling, 2020, 430, 109132.	1.2	8
11	A cultivated planet in 2010 – Part 2: The global gridded agricultural-production maps. Earth System Science Data, 2020, 12, 3545-3572.	3.7	122
12	Decreases in global beer supply due to extreme drought and heat. Nature Plants, 2018, 4, 964-973.	4.7	153
13	Climate change impact on Mexico wheat production. Agricultural and Forest Meteorology, 2018, 263, 373-387.	1.9	66
14	Calibrationâ€induced uncertainty of the EPIC model to estimate climate change impact on global maize yield. Journal of Advances in Modeling Earth Systems, 2016, 8, 1358-1375.	1.3	37
15	Modelling and predicting crop yield, soil carbon and nitrogen stocks under climate change scenarios with fertiliser management in the North China Plain. Geoderma, 2016, 265, 176-186.	2.3	50
16	FACEâ€IT: A science gateway for food security research. Concurrency Computation Practice and Experience, 2015, 27, 4423-4436.	1.4	25
17	Assessing vulnerability and adaptive capacity to potential drought for winter-wheat under the RCP 8.5 scenario in the Huang-Huai-Hai Plain. Agriculture, Ecosystems and Environment, 2015, 209, 125-131.	2.5	47
18	Integrated assessment of China's agricultural vulnerability to climate change: a multi-indicator approach. Climatic Change, 2015, 128, 355-366.	1.7	35

WEI WEI XIONG

#	Article	IF	CITATIONS
19	FACE-IT: A Science Gateway for Food Security Research. , 2014, , .		3
20	Multi-scale geospatial agroecosystem modeling: A case study on the influence of soil data resolution on carbon budget estimates. Science of the Total Environment, 2014, 479-480, 138-150.	3.9	21
21	African crop yield reductions due to increasingly unbalanced Nitrogen and Phosphorus consumption. Global Change Biology, 2014, 20, 1278-1288.	4.2	67
22	A calibration procedure to improve global rice yield simulations with EPIC. Ecological Modelling, 2014, 273, 128-139.	1.2	60
23	Impacts of observed growing-season warming trends since 1980 on crop yields in China. Regional Environmental Change, 2014, 14, 7-16.	1.4	57
24	Global wheat production potentials and management flexibility under the representative concentration pathways. Global and Planetary Change, 2014, 122, 107-121.	1.6	110
25	Can climate-smart agriculture reverse the recent slowing of rice yield growth in China?. Agriculture, Ecosystems and Environment, 2014, 196, 125-136.	2.5	44
26	Geographic Variation of Rice Yield Response to Past Climate Change in China. Journal of Integrative Agriculture, 2014, 13, 1586-1598.	1.7	21
27	Climate change impact on China food security in 2050. Agronomy for Sustainable Development, 2013, 33, 363-374.	2.2	107
28	Rural livelihoods and climate variability in Ningxia, Northwest China. Climatic Change, 2013, 119, 891-904.	1.7	24
29	Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation. Agricultural Systems, 2013, 120, 61-75.	3.2	127
30	The impacts of climate change on agricultural production systems in China. Climatic Change, 2013, 120, 313-324.	1.7	93
31	China's water–energy nexus: greenhouse-gas emissions from groundwater use for agriculture. Environmental Research Letters, 2012, 7, 014035.	2.2	152
32	Untangling relative contributions of recent climate and CO ₂ trends to national cereal production in China. Environmental Research Letters, 2012, 7, 044014.	2.2	49
33	Which policy would work better for improved soil fertility management in sub-Saharan Africa, fertilizer subsidies or carbon credits?. Agricultural Systems, 2012, 110, 162-172.	3.2	25
34	Proposing an interdisciplinary and cross-scale framework for global change and food security researches. Agriculture, Ecosystems and Environment, 2012, 156, 57-71.	2.5	45
35	Modeling the impact of climate change on soil organic carbon stock in upland soils in the 21st century in China. Agriculture, Ecosystems and Environment, 2011, 141, 23-31.	2.5	90
36	Climate change, water availability and future cereal production in China. Agriculture, Ecosystems and Environment, 2010, 135, 58-69.	2.5	144

WEI WEI XIONG

#	Article	IF	CITATIONS
37	A crop model cross calibration for use in regional climate impacts studies. Ecological Modelling, 2008, 213, 365-380.	1.2	82
38	Evaluation of CERESâ€Wheat simulation of Wheat Production in China. Agronomy Journal, 2008, 100, 1720-1728.	0.9	51
39	Climate change and critical thresholds in China's food security. Climatic Change, 2007, 81, 205-221.	1.7	84
40	Adaptation of agriculture to warming in Northeast China. Climatic Change, 2007, 84, 45-58.	1.7	138
41	Modelling China's potential maize production at regional scale under climate change. Climatic Change, 2007, 85, 433-451.	1.7	107
42	<i>Case Study 1: China</i> Benefiting from Global Warming: Agricultural Production in Northeast China. IDS Bulletin, 2005, 36, 15-32.	0.4	6