Giampiero Naletto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8142086/publications.pdf Version: 2024-02-01

		31902	35952
330	11,231	53	97
papers	citations	h-index	g-index
333	333	333	5298
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Ultraviolet Coronagraph Spectrometer for the solar and heliospheric observatory. Solar Physics, 1995, 162, 313-356.	1.0	397
2	UVCS/[ITAL]SOHO[/ITAL] Empirical Determinations of Anisotropic Velocity Distributions in the Solar Corona. Astrophysical Journal, 1998, 501, L127-L131.	1.6	396
3	On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko. Science, 2015, 347, aaa1044.	6.0	366
4	First Results from the Soho Ultraviolet Coronagraph Spectrometer. Solar Physics, 1997, 175, 613-644.	1.0	348
5	Dust measurements in the coma of comet 67P/Churyumov-Gerasimenko inbound to the Sun. Science, 2015, 347, aaa3905.	6.0	310
6	An Empirical Model of a Polar Coronal Hole at Solar Minimum. Astrophysical Journal, 1999, 511, 481-501.	1.6	302
7	OSIRIS – The Scientific Camera System Onboard Rosetta. Space Science Reviews, 2007, 128, 433-506.	3.7	286
8	The morphological diversity of comet 67P/Churyumov-Gerasimenko. Science, 2015, 347, aaa0440.	6.0	259
9	The global shape, density and rotation of Comet 67P/Churyumov-Gerasimenko from preperihelion Rosetta/OSIRIS observations. Icarus, 2016, 277, 257-278.	1.1	252
10	Composition of Coronal Streamers from the SOHO Ultraviolet Coronagraph Spectrometer. Solar Physics, 1997, 175, 645-665.	1.0	248
11	Shape model, reference system definition, and cartographic mapping standards for comet 67P/Churyumov-Gerasimenko – Stereo-photogrammetric analysis of Rosetta/OSIRIS image data. Astronomy and Astrophysics, 2015, 583, A33.	2.1	188
12	Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft. Astronomy and Astrophysics, 2015, 583, A30.	2.1	188
13	Images of Asteroid 21 Lutetia: A Remnant Planetesimal from the Early Solar System. Science, 2011, 334, 487-490.	6.0	179
14	Performance of the grating-crystal monochromator of the ALOISA beamline at the Elettra Synchrotron. Review of Scientific Instruments, 1999, 70, 3855-3864.	0.6	175
15	Insolation, erosion, and morphology of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A34.	2.1	173
16	Feasibility of satellite quantum key distribution. New Journal of Physics, 2009, 11, 045017.	1.2	171
17	The Large Observatory for X-ray Timing (LOFT). Experimental Astronomy, 2012, 34, 415-444.	1.6	168
18	The primordial nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 592, A63.	2.1	159

#	Article	IF	CITATIONS
19	Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse. Nature, 2015, 523, 63-66.	13.7	158
20	EVOLUTION OF THE DUST SIZE DISTRIBUTION OF COMET 67P/CHURYUMOV–GERASIMENKO FROM 2.2 au TO PERIHELION. Astrophysical Journal, 2016, 821, 19.	1.6	158
21	Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images. Astronomy and Astrophysics, 2015, 583, A26.	2.1	153
22	Redistribution of particles across the nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A17.	2.1	149
23	Two independent and primitive envelopes of the bilobate nucleus of comet 67P. Nature, 2015, 526, 402-405.	13.7	141
24	The BEAR Beamline at Elettra. AIP Conference Proceedings, 2004, , .	0.3	139
25	E-Type Asteroid (2867) Steins as Imaged by OSIRIS on Board Rosetta. Science, 2010, 327, 190-193.	6.0	120
26	Metis: the Solar Orbiter visible light and ultraviolet coronal imager. Astronomy and Astrophysics, 2020, 642, A10.	2.1	115
27	Gravitational slopes, geomorphology, and material strengths of the nucleus of comet 67P/Churyumov-Gerasimenko from OSIRIS observations. Astronomy and Astrophysics, 2015, 583, A32.	2.1	113
28	Summer fireworks on comet 67P. Monthly Notices of the Royal Astronomical Society, 2016, 462, S184-S194.	1.6	112
29	Seasonal mass transfer on the nucleus of comet 67P/Chuyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S357-S371.	1.6	111
30	Size-frequency distribution of boulders ≥7 m on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A37.	2.1	108
31	The global meter-level shape model of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2017, 607, L1.	2.1	107
32	Are fractured cliffs the source of cometary dust jets? Insights from OSIRIS/Rosetta at 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 587, A14.	2.1	102
33	The pristine interior of comet 67P revealed by the combined Aswan outburst and cliff collapse. Nature Astronomy, 2017, 1, .	4.2	100
34	Synthesis of the morphological description of cometary dust at comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2019, 630, A24.	2.1	100
35	OSIRIS observations of meter-sized exposures of H ₂ O ice at the surface of 67P/Churyumov-Gerasimenko and interpretation using laboratory experiments. Astronomy and Astrophysics, 2015, 583, A25.	2.1	97
36	Rosetta's comet 67P/Churyumov-Gerasimenko sheds its dusty mantle to reveal its icy nature. Science, 2016, 354, 1566-1570.	6.0	97

#	Article	IF	CITATIONS
37	Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images: The southern hemisphere. Astronomy and Astrophysics, 2016, 593, A110.	2.1	86
38	The rotation state of 67P/Churyumov-Gerasimenko from approach observations with the OSIRIS cameras on Rosetta. Astronomy and Astrophysics, 2014, 569, L2.	2.1	81
39	Fractures on comet 67P/Churyumovâ€Gerasimenko observed by Rosetta/OSIRIS. Geophysical Research Letters, 2015, 42, 5170-5178.	1.5	71
40	SIMBIO-SYS: The spectrometer and imagers integrated observatory system for the BepiColombo planetary orbiter. Planetary and Space Science, 2010, 58, 125-143.	0.9	70
41	Scientific assessment of the quality of OSIRIS images. Astronomy and Astrophysics, 2015, 583, A46.	2.1	67
42	Detection of exposed H ₂ O ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 595, A102.	2.1	67
43	The Lowest-frequency Fast Radio Bursts: Sardinia Radio Telescope Detection of the Periodic FRB 180916 at 328 MHz. Astrophysical Journal Letters, 2020, 896, L40.	3.0	65
44	Surface changes on comet 67P/Churyumov-Gerasimenko suggest a more active past. Science, 2017, 355, 1392-1395.	6.0	63
45	Physical Structure of a Coronal Streamer in the Closedâ€Field Region as Observed from UVCS/SOHOand SXT/Yohkoh. Astrophysical Journal, 1998, 506, 431-438.	1.6	61
46	67P/Churyumov-Gerasimenko: Activity between March and June 2014 as observed from Rosetta/OSIRIS. Astronomy and Astrophysics, 2015, 573, A62.	2.1	60
47	Temporal morphological changes in the Imhotep region of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A36.	2.1	60
48	The 2016 Feb 19 outburst of comet 67P/CG: an ESA Rosetta multi-instrument study. Monthly Notices of the Royal Astronomical Society, 2016, 462, S220-S234.	1.6	60
49	Geomorphology of the Imhotep region on comet 67P/Churyumov-Gerasimenko from OSIRIS observations. Astronomy and Astrophysics, 2015, 583, A35.	2.1	59
50	First results from UVCS/SOHO. Advances in Space Research, 1997, 20, 2219-2230.	1.2	58
51	Mapping the Buraburi granite in the Himalaya of Western Nepal: Remote sensing analysis in a collisional belt with vegetation cover and extreme variation of topography. Remote Sensing of Environment, 2011, 115, 1129-1144.	4.6	57
52	Sunset jets observed on comet 67P/Churyumov-Gerasimenko sustained by subsurface thermal lag. Astronomy and Astrophysics, 2016, 586, A7.	2.1	55
53	Link budget and background noise for satellite quantum key distribution. Advances in Space Research, 2011, 47, 802-810.	1.2	54
54	Comet 67P/Churyumov-Gerasimenko: Constraints on its origin from OSIRIS observations. Astronomy and Astrophysics, 2015, 583, A44.	2.1	53

#	Article	IF	CITATIONS
55	Modelling observations of the inner gas and dust coma of comet 67P/Churyumov-Gerasimenko using ROSINA/COPS and OSIRIS data: First results. Astronomy and Astrophysics, 2016, 589, A90.	2.1	53
56	Aswan site on comet 67P/Churyumov-Gerasimenko: Morphology, boulder evolution, and spectrophotometry. Astronomy and Astrophysics, 2016, 592, A69.	2.1	53
57	Acceleration of individual, decimetre-sized aggregates in the lower coma of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S78-S88.	1.6	52
58	First Results from the SOHO Ultraviolet Coronagraph Spectrometer. , 1997, , 613-644.		50
59	SIMBIO-SYS: Scientific Cameras and Spectrometer for the BepiColombo Mission. Space Science Reviews, 2020, 216, 1.	3.7	47
60	<title>Stray light, radiometric, and spectral characterization of UVCS/SOHO: laboratory calibration and flight performance</title> . , 1996, , .		45
61	Evidence of sub-surface energy storage in comet 67P from the outburst of 2016 July 03. Monthly Notices of the Royal Astronomical Society, 2017, 469, s606-s625.	1.6	45
62	The scattering phase function of comet 67P/Churyumov–Gerasimenko coma as seen from the Rosetta/OSIRIS instrument. Monthly Notices of the Royal Astronomical Society, 2017, 469, S404-S415.	1.6	44
63	The cratering history of asteroid (21) Lutetia. Planetary and Space Science, 2012, 66, 87-95.	0.9	43
64	Seasonal erosion and restoration of the dust cover on comet 67P/Churyumov-Gerasimenko as observed by OSIRIS onboard Rosetta. Astronomy and Astrophysics, 2017, 604, A114.	2.1	43
65	Dust mass distribution around comet 67P/Churyumov–Gerasimenko determined via parallax measurements using Rosetta's OSIRIS cameras. Monthly Notices of the Royal Astronomical Society, 2017, 469, S276-S284.	1.6	43
66	Variegation of comet 67P/Churyumov-Gerasimenko in regions showing activity. Astronomy and Astrophysics, 2016, 586, A80.	2.1	43
67	Iqueye, a single photon-counting photometer applied to the ESO new technology telescope. Astronomy and Astrophysics, 2009, 508, 531-539.	2.1	42
68	PHEBUS: A double ultraviolet spectrometer to observe Mercury's exosphere. Planetary and Space Science, 2010, 58, 201-223.	0.9	42
69	Geomorphology and spectrophotometry of Philae's landing site on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A41.	2.1	41
70	An extremely bright gamma-ray pulsar in the Large Magellanic Cloud. Science, 2015, 350, 801-805.	6.0	41
71	<title>Performance of the double delay line microchannel plate detectors for the Far-Ultraviolet
Spectroscopic Explorer</title> . , 1997, 3114, 283.		40
72	The pebbles/boulders size distributions on Sais: Rosetta's final landing site on comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S636-S645.	1.6	40

#	Article	IF	CITATIONS
73	Tensile strength of 67P/Churyumov–Gerasimenko nucleus material from overhangs. Astronomy and Astrophysics, 2018, 611, A33.	2.1	40
74	Large-scale dust jets in the coma of 67P/Churyumov-Gerasimenko as seen by the OSIRIS instrument onboard Rosetta. Astronomy and Astrophysics, 2015, 583, A9.	2.1	39
75	The dust environment of comet 67P/Churyumov-Gerasimenko from Rosetta OSIRIS and VLT observations in the 4.5 to 2.9 AU heliocentric distance range inbound. Astronomy and Astrophysics, 2016, 587, A155.	2.1	39
76	Thermal modelling of water activity on comet 67P/Churyumov-Gerasimenko with global dust mantle and plural dust-to-ice ratio. Monthly Notices of the Royal Astronomical Society, 2017, 469, S295-S311.	1.6	39
77	CHANGES IN THE PHYSICAL ENVIRONMENT OF THE INNER COMA OF 67P/CHURYUMOV–GERASIMENKO WITH DECREASING HELIOCENTRIC DISTANCE. Astronomical Journal, 2016, 152, 130.	1.9	36
78	Optical-tunneling time measures: a microwave model. Physica B: Condensed Matter, 1991, 175, 283-286.	1.3	35
79	AquEYE, a single photon counting photometer for astronomy. Journal of Modern Optics, 2009, 56, 261-272.	0.6	34
80	METIS: a novel coronagraph design for the Solar Orbiter mission. Proceedings of SPIE, 2012, , .	0.8	34
81	Gas outflow and dust transport of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S533-S546.	1.6	34
82	Observations and analysis of a curved jet in the coma of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 588, L3.	2.1	34
83	Experimental phase function and degree of linear polarization of cometary dust analogues. Monthly Notices of the Royal Astronomical Society, 2019, 484, 2198-2211.	1.6	34
84	Morphology and dynamics of the jets of comet 67P/Churyumov-Gerasimenko: Early-phase development. Astronomy and Astrophysics, 2015, 583, A11.	2.1	33
85	Constraints on cometary surface evolution derived from a statistical analysis of 67P's topography. Monthly Notices of the Royal Astronomical Society, 2017, 469, S329-S338.	1.6	33
86	Meter-scale thermal contraction crack polygons on the nucleus of comet 67P/Churyumov-Gerasimenko. Icarus, 2018, 301, 173-188.	1.1	33
87	Optical design of the single-detector planetary stereo camera for the BepiColombo European Space Agency mission to Mercury. Applied Optics, 2010, 49, 2910.	2.1	32
88	Regional unit definition for the nucleus of comet 67P/Churyumov-Gerasimenko on the SHAP7 model. Planetary and Space Science, 2018, 164, 19-36.	0.9	32
89	First light observations of the solar wind in the outer corona with the Metis coronagraph. Astronomy and Astrophysics, 2021, 656, A32.	2.1	32
90	Amorphous silicon/silicon carbide photodiodes with excellent sensitivity and selectivity in the vacuum ultraviolet spectrum. Applied Physics Letters, 1995, 67, 335-337.	1.5	31

#	Article	IF	CITATIONS
91	The highly active Anhur–Bes regions in the 67P/Churyumov–Gerasimenko comet: results from OSIRIS/ROSETTA observations. Monthly Notices of the Royal Astronomical Society, 2017, 469, S93-S107.	1.6	30
92	Optical design of the multi-wavelength imaging coronagraph Metis for the solar orbiter mission. Experimental Astronomy, 2020, 49, 239-263.	1.6	30
93	Measurements of H I and O VI velocity distributions in the extended solar corona with UVCS/SOHO and UVCS/Spartan 201. Advances in Space Research, 1997, 20, 3-14.	1.2	29
94	A mini outburst from the nightside of comet 67P/Churyumov-Gerasimenko observed by the OSIRIS camera on Rosetta. Astronomy and Astrophysics, 2016, 596, A89.	2.1	29
95	Mapping the solar wind HI outflow velocity in the inner heliosphere by coronagraphic ultraviolet and visible-light observations. Astronomy and Astrophysics, 2018, 612, A84.	2.1	28
96	Velocity Fields in the Solar Corona during Mass Ejections as observed with UVCS–[ITAL]SOHO[/ITAL]. Astrophysical Journal, 1997, 490, L183-L186.	1.6	28
97	Observations of Comet 9P/Tempel 1 around the Deep Impact event by the OSIRIS cameras onboard Rosetta. Icarus, 2007, 187, 87-103.	1.1	27
98	Geologic mapping of the Comet 67P/Churyumov–Gerasimenko's Northern hemisphere. Monthly Notices of the Royal Astronomical Society, 2016, 462, S352-S367.	1.6	27
99	The southern hemisphere of 67P/Churyumov-Gerasimenko: Analysis of the preperihelion size-frequency distribution of boulders ≥7 m. Astronomy and Astrophysics, 2016, 592, L2.	2.1	27
100	Effects of proton irradiation on glass filter substrates for the Rosetta mission. Applied Optics, 2003, 42, 3970.	2.1	26
101	Multi Element Telescope for Imaging and Spectroscopy (METIS) coronagraph for the Solar Orbiter mission. Proceedings of SPIE, 2012, , .	0.8	26
102	Rotating dust particles in the coma of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A14.	2.1	26
103	Characterization of the Abydos region through OSIRIS high-resolution images in support of CIVA measurements. Astronomy and Astrophysics, 2016, 585, L1.	2.1	26
104	Decimetre-scaled spectrophotometric properties of the nucleus of comet 67P/Churyumov–Gerasimenko from OSIRIS observations. Monthly Notices of the Royal Astronomical Society, 2016, 462, S287-S303.	1.6	26
105	Exploring the Solar Wind from Its Source on the Corona into the Inner Heliosphere during the First Solar Orbiter–Parker Solar Probe Quadrature. Astrophysical Journal Letters, 2021, 920, L14.	3.0	25
106	Long-term survival of surface water ice on comet 67P. Monthly Notices of the Royal Astronomical Society, 2017, 469, S582-S597.	1.6	24
107	Osiris—The optical, spectroscopic and infrared remote imaging system for the Rosetta Orbiter. Advances in Space Research, 1998, 21, 1505-1515.	1.2	23
108	Method for studying the effects of thermal deformations on optical systems for space application. Applied Optics, 2011, 50, 2836.	2.1	23

#	Article	IF	CITATIONS
109	Orbital elements of the material surrounding comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A16.	2.1	23
110	Sublimation of icy aggregates in the coma of comet 67P/Churyumov–Gerasimenko detected with the OSIRIS cameras on board <i>Rosetta</i> . Monthly Notices of the Royal Astronomical Society, 2016, 462, S57-S66.	1.6	23
111	Geomorphological mapping of comet 67P/Churyumov–Gerasimenko's Southern hemisphere. Monthly Notices of the Royal Astronomical Society, 2016, 462, S573-S592.	1.6	23
112	Investigating the physical properties of outbursts on comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S731-S740.	1.6	23
113	Size-frequency distribution of boulders ≥10 m on comet 103P/Hartley 2. Astronomy and Astrophysics, 2016, 585, A85.	2.1	23
114	Composition of Coronal Streamers from the SOHO Ultraviolet Coronagraph Spectrometer. , 1997, , 645-665.		23
115	Astronomical applications of quantum optics for extremely large telescopes. Journal of Modern Optics, 2007, 54, 191-197.	0.6	22
116	Physical properties and dynamical relation of the circular depressions on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 591, A132.	2.1	22
117	The opposition effect of 67P/Churyumov–Gerasimenko on post-perihelion Rosetta images. Monthly Notices of the Royal Astronomical Society, 2017, 469, S550-S567.	1.6	22
118	A three-dimensional modelling of the layered structure of comet 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S741-S754.	1.6	22
119	Bilobate comet morphology and internal structure controlled by shear deformation. Nature Geoscience, 2019, 12, 157-162.	5.4	22
120	<title>Monochromator for the synchrotron radiation beamline X-MOSS at ELETTRA</title> ., 2001, , .		21
121	Optical phase coherent timing of the Crab nebula pulsar with Iqueye at the ESO New Technology Telescope. Monthly Notices of the Royal Astronomical Society, 2014, 439, 2813-2821.	1.6	21
122	On deviations from free-radial outflow in the inner coma of comet 67P/Churyumov–Gerasimenko. Icarus, 2018, 311, 1-22.	1.1	21
123	Spectrophotometry of the Khonsu region on the comet 67P/Churyumov–Gerasimenko using OSIRIS instrument images. Monthly Notices of the Royal Astronomical Society, 2016, 462, S274-S286.	1.6	20
124	The phase function and density of the dust observed at comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2835-2839.	1.6	20
125	Models of Rosetta/OSIRIS 67P Dust Coma Phase Function. Astronomical Journal, 2018, 156, 237.	1.9	20
126	Grazing-incidence flat-field spectrometer for high-order harmonic diagnostics. Optical Engineering, 2001, 40, 178.	0.5	19

#	Article	IF	CITATIONS
127	Coma morphology of comet 67P controlled by insolation over irregular nucleus. Nature Astronomy, 2018, 2, 562-567.	4.2	19
128	Comparative study of water ice exposures on cometary nuclei using multispectral imaging data. Monthly Notices of the Royal Astronomical Society, 2016, 462, S394-S414.	1.6	18
129	CASTAway: An asteroid main belt tour and survey. Advances in Space Research, 2018, 62, 1998-2025.	1.2	18
130	Linking surface morphology, composition, and activity on the nucleus of 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2019, 630, A7.	2.1	18
131	Aqueye optical observations of the Crab Nebula pulsar. Astronomy and Astrophysics, 2012, 548, A47.	2.1	18
132	Characterization of detectors for the Italian Astronomical Quantum Photometer Project. Journal of Modern Optics, 2009, 56, 273-283.	0.6	17
133	Post-perihelion photometry of dust grains in the coma of 67P Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S195-S203.	1.6	17
134	The ASTRI Mini-Array of Cherenkov telescopes at the Observatorio del Teide. Journal of High Energy Astrophysics, 2022, 35, 52-68.	2.4	17
135	Response analysis in the 300- to 2500-(angstrom) spectral range of ultraviolet-enhanced charge-coupled devices. Optical Engineering, 1994, 33, 2544.	0.5	16
136	THE STEREO CAMERA ON THE BEPICOLOMBO ESA/JAXA MISSION: A NOVEL APPROACH. , 2009, , 305-322.		16
137	The optical light curve of the Large Magellanic Cloud pulsar B0540â^'69 in 2009. Monthly Notices of the Royal Astronomical Society, 2011, 412, 2689-2694.	1.6	15
138	The Agilkia boulders/pebbles size–frequency distributions: OSIRIS and ROLIS joint observations of 67P surface. Monthly Notices of the Royal Astronomical Society, 2016, 462, S242-S252.	1.6	15
139	Exposed bright features on the comet 67P/Churyumov–Gerasimenko: distribution and evolution. Astronomy and Astrophysics, 2018, 613, A36.	2.1	15
140	Precise optical timing of PSR J1023+0038, the first millisecond pulsar detected with Aqueye+Âin Asiago. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 485, L109-L113.	1.2	15
141	Surface evolution of the Anhur region on comet 67P/Churyumov-Gerasimenko from high-resolution OSIRIS images. Astronomy and Astrophysics, 2019, 630, A13.	2.1	15
142	Performance of a thinned back-illuminated ion-implanted CCD as detector for a normal incidence EUV spectrograph. Measurement Science and Technology, 1994, 5, 1491-1500.	1.4	14
143	Pre-hibernation performances of the OSIRIS cameras onboard the Rosetta spacecraft. Astronomy and Astrophysics, 2015, 574, A123.	2.1	14
144	Possible interpretation of the precession of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 590, A46.	2.1	14

#	Article	IF	CITATIONS
145	A high resolution monochromator covering wide ultraviolet spectral ranges with a single grating. Journal of Optics, 1992, 1, 347-358.	0.5	13
146	First results from the new optical configuration for a synchrotron radiation monochromator applied to the ALOISA beamline. , 1997, , .		13
147	QuantEYE, the quantum optics instrument for OWL. Proceedings of the International Astronomical Union, 2005, 1, 506-507.	0.0	13
148	Long-term monitoring of comet 67P/Churyumov–Gerasimenko's jets with OSIRIS onboard Rosetta. Monthly Notices of the Royal Astronomical Society, 2017, 469, S380-S385.	1.6	13
149	The First Ultraviolet Detection of the Large Magellanic Cloud Pulsar PSR B0540–69 and Its Multi-wavelength Properties. Astrophysical Journal, 2019, 871, 246.	1.6	13
150	Time evolution of dust deposits in the Hapi region of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2020, 636, A91.	2.1	13
151	Search for satellites near comet 67P/Churyumov-Gerasimenko using Rosetta/OSIRIS images. Astronomy and Astrophysics, 2015, 583, A19.	2.1	13
152	Optical design of the Wide Angle Camera for the Rosetta mission. Applied Optics, 2002, 41, 1446.	2.1	12
153	Observations of Comet 9P/Tempel 1 around the Deep Impact event by the OSIRIS cameras onboard Rosetta. Icarus, 2007, 191, 241-257.	1.1	12
154	Analysis of diffraction from the occulter edges of a giant externally occulted solar coronagraph. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2008, 25, 182.	0.8	12
155	Modelling of the outburst on 2015 July 29 observed with OSIRIS cameras in the Southern hemisphere of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S178-S185.	1.6	12
156	Characterization of dust aggregates in the vicinity of the Rosetta spacecraft. Monthly Notices of the Royal Astronomical Society, 2017, 469, S312-S320.	1.6	12
157	Opposition effect on comet 67P/Churyumov-Gerasimenko using Rosetta-OSIRIS images. Astronomy and Astrophysics, 2017, 599, A11.	2.1	11
158	Multivariate statistical analysis of OSIRIS/Rosetta spectrophotometric data of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2017, 600, A115.	2.1	11
159	The first Coronal Mass Ejection observed in both visible-light and UV H I Ly-alpha channels of the Metis Coronagraph on board Solar Orbiter. Astronomy and Astrophysics, 0, , .	2.1	11
160	Ultraviolet and Visible-light Coronagraphic Imager (UVCI). , 2003, , .		10
161	No wavefront sensor adaptive optics system for compensation of primary aberrations by software analysis of a point source image 1 Methods. Applied Optics, 2007, 46, 6434.	2.1	10
162	Simulations using terrestrial geological analogues to assess interpretability of potential geological features of the Hermean surface restituted by the STereo imaging Camera of the SIMBIOSYS package (BepiColombo mission). Planetary and Space Science, 2008, 56, 1079-1092.	0.9	10

#	Article	IF	CITATIONS
163	Optimization of the occulter for the Solar Orbiter/METIS coronagraph. , 2012, , .		10
164	Novel space coronagraphs: METIS, a flexible optical design for multi-wavelength imaging and spectroscopy. , 2013, , .		10
165	Aqueye+: a new ultrafast single photon counter for optical high time resolution astrophysics. Proceedings of SPIE, 2015, , .	0.8	10
166	Intensity interferometry with Aqueye+ and Iqueye in Asiago. Proceedings of SPIE, 2016, , .	0.8	10
167	Photometry of dust grains of comet 67P and connection with nucleus regions. Astronomy and Astrophysics, 2016, 588, A59.	2.1	10
168	Spectral resolution improvement technique for a spectrograph mounting a discrete array detector. Optical Engineering, 1996, 35, 1503.	0.5	9
169	Multidisciplinary analysis of the Hapi region located on Comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2139-2154.	1.6	9
170	Diurnal variation of dust and gas production in comet 67P/Churyumov-Gerasimenko at the inbound equinox as seen by OSIRIS and VIRTIS-M on board Rosetta. Astronomy and Astrophysics, 2019, 630, A23.	2.1	9
171	Seasonal variations in source regions of the dust jets on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2019, 630, A17.	2.1	9
172	The Rocky‣ike Behavior of Cometary Landslides on 67P/Churyumovâ€Gerasimenko. Geophysical Research Letters, 2019, 46, 14336-14346.	1.5	9
173	Characterization of OSIRIS NAC filters for the interpretation of multispectral data of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A45.	2.1	8
174	What brakes the Crab pulsar?. Astronomy and Astrophysics, 2016, 587, A99.	2.1	8
175	Distance determination method of dust particles using Rosetta OSIRIS NAC and WAC data. Planetary and Space Science, 2017, 143, 256-264.	0.9	8
176	Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images: The southern hemisphere (Corrigendum). Astronomy and Astrophysics, 2017, 598, C2.	2.1	8
177	Geomorphological and spectrophotometric analysis of Seth's circular niches on comet 67P/Churyumov–Gerasimenko using OSIRIS images. Monthly Notices of the Royal Astronomical Society, 2017, 469, S238-S251.	1.6	8
178	Effects of image compression and illumination on digital terrain models for the stereo camera of the BepiColombo mission. Planetary and Space Science, 2017, 136, 1-14.	0.9	8
179	Effect of the non-uniform solar chromospheric Ly <i>α</i> radiation on determining the coronal Hâ€T outflow velocity. Astronomy and Astrophysics, 2019, 627, A18.	2.1	8
180	Analysis of night-side dust activity on comet 67P observed by VIRTIS-M: a new method to constrain the thermal inertia on the surface. Astronomy and Astrophysics, 2019, 630, A21.	2.1	8

#	Article	IF	CITATIONS
181	Timing analysis and pulse profile of the Vela pulsar in the optical band from Iqueye observations. Monthly Notices of the Royal Astronomical Society, 2019, 482, 175-183.	1.6	8
182	The Crab pulsar seen with AquEYE at Asiago Cima Ekar observatory. Advances in Space Research, 2011, 47, 365-369.	1.2	7
183	Innovative optical setup for testing a stereo camera for space applications. Proceedings of SPIE, 2012, ,	0.8	7
184	A prototype of the UV detector for METIS on Solar Orbiter. , 2012, , .		7
185	Aqueye Plus: a very fast single photon counter for astronomical photometry to quantum limits equipped with an Optical Vortex coronagraph. Proceedings of SPIE, 2013, , .	0.8	7
186	Building galaxies, stars, planets and the ingredients for life between the stars. The science behind the European Ultraviolet-Visible Observatory. Astrophysics and Space Science, 2014, 354, 229-246.	0.5	7
187	Radiometric model for the stereo camera STC onboard the BepiColombo ESA mission. Proceedings of SPIE, 2016, , .	0.8	7
188	Thermophysics of fractures on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2017, 608, A121.	2.1	7
189	The big lobe of 67P/Churyumov–Gerasimenko comet: morphological and spectrophotometric evidences of layering as from OSIRIS data. Monthly Notices of the Royal Astronomical Society, 2018, 479, 1555-1568.	1.6	7
190	Comparing extrapolations of the coronal magnetic field structure at 2.5 <i>R</i> _⊙ with multi-viewpoint coronagraphic observations. Astronomy and Astrophysics, 2019, 627, A9.	2.1	7
191	Pronounced morphological changes in a southern active zone on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2019, 630, A8.	2.1	7
192	Spin-down rate of the transitional millisecond pulsar PSR J1023+0038 in the optical band with Aqueye+. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 498, L98-L103.	1.2	7
193	Long-term measurements of the erosion and accretion of dust deposits on comet 67P/Churyumov–Gerasimenko with the OSIRIS instrument. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2895-2910.	1.6	7
194	Stellar intensity interferometry of Vega in photon counting mode. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1585-1594.	1.6	7
195	Fluorescence of metachrome in the far- and vacuum-ultraviolet spectral region. , 1995, , .		7
196	METIS, the Multi Element Telescope for Imaging and Spectroscopy: for the solar orbiter mission. , 2019, , .		7
197	Astronomical quantum optics with Extremely Large Telescopes. Proceedings of the International Astronomical Union, 2005, 1, 502-505.	0.0	6
198	Very fast photon counting photometers for astronomical applications: from QuantEYE to AquEYE. , 2007, , .		6

4

#	Article	IF	CITATIONS
199	Characterization of the integrating sphere for the on-ground calibration of the SIMBIOSYS instrument for the BepiColombo ESA mission. Proceedings of SPIE, 2014, , .	0.8	6
200	The backscattering ratio of comet 67P/Churyumov-Gerasimenko dust coma as seen by OSIRIS onboard Rosetta. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	6
201	Rosetta/OSIRIS observations of the 67P nucleus during the April 2016 flyby: high-resolution spectrophotometry. Astronomy and Astrophysics, 2019, 630, A9.	2.1	6
202	METIS, the Multi Element Telescope for Imaging and Spectroscopy: an instrument proposed for the solar orbiter mission. , 2017, , .		6
203	<title>Comparison between the EUV performances of cryogenically cooled CCDs and a MAMA detector</title> . , 1992, , .		5
204	Performances of metachrome II as a scintillator for the far and vacuum ultraviolet spectral region. Optical Engineering, 1996, 35, 3342.	0.5	5
205	Optical performances of the Ultraviolet Coronagraph Spectrometer of the Solar Heliospheric Observatory. Applied Optics, 1997, 36, 813.	2.1	5
206	<title>Ultraviolet and visible-light coronagraph for the Solar Orbiter mission</title> . , 2000, , .		5
207	QuantEYE: a quantum optics instrument for extremely large telescopes. , 2006, 6269, 635.		5
208	Intersatellite quantum communication feasibility study. Proceedings of SPIE, 2011, , .	0.8	5
209	Stereo Camera for satellite application: A new testing method. , 2014, , .		5
210	Stray-light analyses of the METIS coronagraph on Solar Orbiter. Proceedings of SPIE, 2015, , .	0.8	5
211	Global-scale brittle plastic rheology at the cometesimals merging of comet 67P/Churyumov–Gerasimenko. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10181-10187.	3.3	5
212	Observational constraints to the dynamics of dust particles in the coma of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4687-4705.	1.6	5
213	High-resolution soft-X-ray monochromators of new design. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1990, 291, 213-218.	0.7	4
214	<title>VUV optical performances of the spectrometer of the UVCS instrument for SOHO</title> . , 1995, , .		4
215	Amorphous silicon thin film as tuneable and high sensitive photodetector in the UV and far UV spectral range. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 387, 243-245.	0.7	4

216 <title>Advanced Solar Coronal Explorer mission (ASCE) </title>., 1999,,.

13

#	Article	IF	CITATIONS
217	A novel optical design for planetary surface stereo-imaging: preliminary design of the stereoscopic imaging channel of SIMBIOSYS for the BepiColombo ESA mission. , 2006, 6265, 714.		4
218	Quantum astronomy with Iqueye. , 2010, , .		4
219	A New Stereo Algorithm based on Snakes. Photogrammetric Engineering and Remote Sensing, 2011, 77, 495-507.	0.3	4
220	Chost images determination for the stereoscopic imaging channel of SIMBIOSYS for the BepiColombo ESA mission. Proceedings of SPIE, 2011, , .	0.8	4
221	The solar orbiter METIS coronagraph data signal processing chain. , 2011, , .		4
222	Design optimization for quantum communications in a GNSS intersatellite network. , 2013, , .		4
223	Preliminary tolerance analysis of the coronagraphic instrument METIS for the Solar Orbiter ESA mission. , 2013, , .		4
224	On-board CME detection algorithm for the Solar Orbiter-METIS coronagraph. , 2014, , .		4
225	On-board detection and removal of cosmic ray and solar energetic particle signatures for the Solar Orbiter-METIS coronagraph. Proceedings of SPIE, 2014, , .	0.8	4
226	Quantitative analysis of isolated boulder fields on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2019, 630, A15.	2.1	4
227	First Results of AQuEye, a Precursor â€~Quantum' Instrument for the E-ELT. Thirty Years of Astronomical Discovery With UKIRT, 2009, , 249-253.	0.3	4
228	Thin-film photodetectors for the vacuum ultraviolet spectral region. Applied Optics, 1997, 36, 2751.	2.1	3
229	Quasi-null lens optical system for the fabrication of an oblate convex ellipsoidal mirror: application to the Wide Angle Camera of the Rosetta space mission. Applied Optics, 2006, 45, 6119.	2.1	3
230	The optical design and preliminary optomechanical tolerances of the high resolution imaging channel for the BepiColombo mission to Mercury. , 2006, , .		3
231	Design of a high-flux low-energy synchrotron radiation monochromator. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 556, 371-378.	0.7	3
232	No wavefront sensor adaptive optics system for compensation of primary aberrations by software analysis of a point source image 2 Tests. Applied Optics, 2007, 46, 6427.	2.1	3
233	Upgrade of Iqueye, a novel photon-counting photometer for the ESO New Technology Telescope. Proceedings of SPIE, 2010, , .	0.8	3
234	Performance evaluation of DTM area-based matching reconstruction of Moon and Mars. Proceedings of SPIE, 2012, , .	0.8	3

#	Article	IF	CITATIONS
235	The processing and power unit of the METIS coronagraph aboard the Solar Orbiter space mission. , 2012, , .		3
236	Aqueye+: a wavefront sensorless adaptive optics system for narrow field coronagraphy. Proceedings of SPIE, 2013, , .	0.8	3
237	DTM generation from STC-SIMBIO-SYS images. , 2015, , .		3
238	Distortion definition and correction in off-axis systems. Proceedings of SPIE, 2015, , .	0.8	3
239	Geometrical distortion calibration of the stereo camera for the BepiColombo mission to Mercury. Proceedings of SPIE, 2016, , .	0.8	3
240	Spectroscopic observations of the bilobate potentially hazardous asteroid 2014 JO25 from the Asiago 1.22-m telescope. Planetary and Space Science, 2018, 158, 63-68.	0.9	3
241	Preliminary occulter optimization for an innovative space coronagraph. SPIE Newsroom, 0, , .	0.1	3
242	UV observational techniques for the extended solar corona. Advances in Space Research, 1991, 11, 359-367.	1.2	2
243	New test facility for reflectivity measurements in the extreme- ultraviolet spectral region. , 1993, , .		2
244	<title>Laser-produced plasma stigmatic observations in the EUV by means of a CCD detector with enhanced VUV sensitivity</title> . , 1994, 2283, 152.		2
245	<title>Performances of ion-implanted CCDs in the EUV spectral region</title> . , 1994, 2278, 98.		2
246	Laser- produced plasma stigmatic observations in the extreme ultraviolet by means of aCCD detector. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1997, 19, 759-777.	0.4	2
247	<title>Optical design of a grazing incidence spectrometer/monochromater with varied line-space flat
grating for high-order harmonic diagnostic</title> . , 1999, , .		2
248	<title>Optical performance of the wide-angle camera for the Rosetta mission: preliminary results</title> .,2001,,.		2
249	The Ultraviolet and Visible-light Coronagraph of the HERSCHEL experiment. AIP Conference Proceedings, 2003, , .	0.3	2
250	Grazing-incidence reflectivity of Si-Au coatings for optics with high thermal load. , 2004, , .		2
251	Optical design of a high-spatial-resolution extreme-ultraviolet spectroheliograph for the transition region. Applied Optics, 2005, 44, 5046.	2.1	2
252	The beam position monitor of the BEAR beamline. Review of Scientific Instruments, 2005, 76, 063111.	0.6	2

#	Article	IF	CITATIONS
253	lqueye: a single-photon counting very high-speed photometer for the ESO 3.5m NTT. Proceedings of SPIE, 2010, , .	0.8	2
254	Polarimetric calibrations and astronomical polarimetry in the V-band with Solar Orbiter/METIS instrument. Proceedings of SPIE, 2014, , .	0.8	2
255	Spectrophotometric variegation of the layering in comet 67P/Churyumov-Gerasimenko as seen by OSIRIS. Astronomy and Astrophysics, 2019, 630, A16.	2.1	2
256	Space Lidar and Space Optics. CEAS Space Journal, 2019, 11, 359-362.	1.1	2
257	Metis/Solar Orbiter polarimetric visible light channel calibration. , 2019, , .		2
258	Lunar Occultations with Aqueye+ and Iqueye. Astronomical Journal, 2019, 158, 176.	1.9	2
259	Beam splitting and recombining of the radiation from an EUV free-electron laser by means of reflection gratings. , 2004, , .		2
260	Wide field of view liquid crystals-based modulator for the polarimeter of the Metis/Solar Orbiter. , 2018, , .		2
261	Optical performance of the Metis coronagraph on the Solar Orbiter ESA mission. , 2019, , .		2
262	Optical design performance of the stereo channel for Simbiosys onâ€board the Bepicolombo ESA mission. , 2019, , .		2
263	Deep Upper Limit on the Optical Emission during a Hard X-Ray Burst from the Magnetar SGR J1935+2154. Astrophysical Journal Letters, 2022, 925, L16.	3.0	2
264	New technique for determining a pulsar period: Waterfall principal component analysis. Astronomy and Astrophysics, 2022, 663, A106.	2.1	2
265	<title>Fabrication of toroidal and coma-corrected toroidal diffraction gratings from spherical master gratings using elastically deformable substrates: a progress report</title> . , 1991, 1494, 472.		1
266	<title>Spectroscopic characterization of the EUV toroidal grating for the HiRES rocket</title> . , 1993, 2006, 22.		1
267	Ultraviolet coronagraph spectrometer (UVCS) for the solar and heliospheric (SOHO) mission. , 1994, , .		1
268	<title>Vertical test facility operating at vacuum ultraviolet for testing very thin wall grazing incidence x-ray mirrors</title> . , 1994, , .		1
269	X-ray CCD camera to detect scattered light in the experimental chamber of the ALOISA beamline. , 1995, 2519, 149.		1
270	<title>Amorphous silicon thin film photodetectors with high sensitivity and selectivity in the</td><td></td><td>1</td></tr></tbody></table></title>		

ultraviolet spectrum</title>., 1996, 2808, 605.

#	Article	IF	CITATIONS
271	<title>Stray light evaluation of the Ultraviolet and Visible-light Coronagraph Imager (UVCI) rocket
prototype</title> . , 2001, 4498, 27.		1
272	Possible optical design for ASPICS, a formation-flyer solar coronagraph for close-limb visible and Lyman-Î \pm imaging of the corona. , 2005, , .		1
273	Diffraction effects in a giant saw-toothed edge externally occulted solar coronagraph. , 2008, , .		1
274	Very fast photon counting photometers for astronomical applications: IquEYE for the ESO 3.5m New Technology Telescope. , 2009, , .		1
275	Observing Mercury: from Galileo to the stereo camera on the BepiColombo mission. Proceedings of the International Astronomical Union, 2010, 6, 213-218.	0.0	1
276	Determination of ghost images for the wide angle camera of the Rosetta ESA mission. Proceedings of SPIE, 2012, , .	0.8	1
277	Preliminary internal straylight analysis of the METIS instrument for the Solar Orbiter ESA mission. , 2012, , .		1
278	MESSI: the METIS instrument software simulator. Proceedings of SPIE, 2012, , .	0.8	1
279	Recent advances in electronics and software for the METIS coronagraph aboard solar orbiter. , 2013, , .		1
280	Test of a multilayer-coated EUV grating for I-IV order spectroscopic measurements of the solar corona. , 2013, , .		1
281	A 3.9 km baseline intensity interferometry photon counting experiment. , 2016, , .		1
282	Very high sensitivity laser gyroscopes for general relativity tests in a ground laboratory. , 2016, , .		1
283	Radiometric calibration of the SIMBIO-SYS STereo imaging Channel. CEAS Space Journal, 2019, 11, 485-496.	1.1	1
284	Phase-curve analysis of comet 67P/Churyumov-Gerasimenko at small phase angles. Astronomy and Astrophysics, 2019, 630, A11.	2.1	1
285	Laboratory characterization of HYPSOS, a novel 4D remote sensing instrument. , 2021, , .		1
286	Spectral response of the stereo imaging channel of SIMBIO-SYS on-board the ESA BepiColombo Mission. , 2019, , .		1
287	SIMBIOSYS-STC ready for launch: a technical recap. , 2019, , .		1
288	SIMBIO-SYS STC ready for the first light: the radiometric calibration. , 2019, , .		1

#	Article	IF	CITATIONS
289	Measuring the F-corona intensity through time correlation of total and polarized visible light images. Astronomy and Astrophysics, 2022, 659, A50.	2.1	1
290	High-resolution stigmatic EUV spectroheliometer for studies of the fine scale structure of the solar chromosphere, transition region, and corona. , 1991, , .		0
291	Design and test of a high-resolution EUV spectroheliometer. , 1992, 1546, 446.		Ο
292	<title>HiRES: High-resolution extreme-ultraviolet spectroheliometer toroidal diffraction grating performance evaluation</title> ., 1993,,.		0
293	<title>VUV optical performances of the SOHO/Ultraviolet Coronagraph Spectrometer</title> . , 1994, , .		0
294	<title>Preliminary optical design for Plures and Rosetta</title> ., 1994, 2282, 162.		0
295	<title>Optical design for the Rosetta wide-angle camera</title> . , 1995, 2478, 257.		0
296	<title>Spectral resolution improvement technique for a spectrograph mounting a discrete array detector</title> . , 1995, 2517, 62.		0
297	<title>Ultraviolet Coronagraph Spectrometer for the Solar and Heliospheric Observatory:
instrument description and calibration overview</title> . , 1995, , .		0
298	<title>Two-mirror planetary camera with an off-Rowland UV spectograph for the Rosetta space
mission</title> . , 1996, , .		0
299	<title>HiRES: the High-Resolution EUV Spectroheliometer</title> . , 1997, , .		0
300	<title>Optical configurations for the EUV channels of the Advanced Solar Coronal Explorer mission</title> . , 1999, 3764, 110.		0
301	<title>Spectrometer for UVISS telescope on the space station</title> ., 2000, , .		0
302	<title>Ultraviolet Italian Sky Surveyor (UVISS) on the International Space Station (ISS): study report</title> . , 2000, 4139, 199.		0
303	Calibration of the Wide-Angle Camera for the Rosetta mission: preliminary results on the flight model. , 2003, , .		0
304	Performance analysis of the spectroscopic channel of UVISS, the ultraviolet Italian telescope for the ISS. , 2003, 4854, 29.		0
305	Ultrafast camera for motion recognition by tomographic techniques. , 2004, , .		0
306	Aberration estimation from single point image in a simulated adaptive optics system. , 2005, 2005, 3173-6.		0

Aberration estimation from single point image in a simulated adaptive optics system. , 2005, 2005, 3173-6. 306

#	Article	IF	CITATIONS
307	Push-pull electrostatic deformable mirrors. Proceedings of SPIE, 2008, , .	0.8	0
308	Crab Pulsar Observations with AquEYE. , 2009, , .		0
309	The narrow angle camera of the MPCS suite for the MarcoPolo ESA Mission: requirements and optical design solutions. Proceedings of SPIE, 2010, , .	0.8	0
310	Timing of optical pulsars with two high time resolution photometers at Asiago and NTT. , 2011, , .		0
311	Crab Pulsar: Enhanced Optical Emission During Giant Radio Pulses. Proceedings of the International Astronomical Union, 2011, 7, 296-298.	0.0	0
312	Aqu <scp>eye</scp> and Iqu <scp>eye</scp> , Very-High-Time-Resolution Photon-Counting Photometers. Proceedings of the International Astronomical Union, 2011, 7, 280-282.	0.0	0
313	On board processing procedures for the Solar Orbiter METIS coronagraph. Proceedings of SPIE, 2013, ,	0.8	0
314	Solar alpha particles damage effects on UV and EUV optical coatings. , 2013, , .		0
315	Hardware and software architecture on board solar orbiter/METIS: an update. Proceedings of SPIE, 2014, , .	0.8	0
316	Preliminary LSF and MTF determination for the stereo camera of the BepiColombo mission. Proceedings of SPIE, 2014, , .	0.8	0
317	In-flight UV and polarized-VL radiometric calibrations of the solar orbiter/METIS imaging coronagraph. Proceedings of SPIE, 2014, , .	0.8	0
318	Damage of EUV optical coatings induced by alpha-particles bombardment. , 2014, , .		0
319	Development of optical components for METIS instrument. , 2014, , .		Ο
320	A network of heterodyne laser interferometers for monitoring and control of large ring-lasers. Proceedings of SPIE, 2016, , .	0.8	0
321	Measurement of the second-order g(2) correlation function of visible light from Vega in photon counting mode. , 2021 , , .		0
322	OSIRIS: The Scientific Camera System Onboard Rosetta. , 2009, , 1-67.		0
323	Optical design and performance of the Stereoscopic Imaging Channel for the ESA BepiColombo mission. , 2017, , .		0
324	Optical measurements of the mirrors and of the interferential filter of the Metis coronagraph on Solar Orbiter. , 2017, , .		0

#	Article	IF	CITATIONS
325	Preliminary calibration results of the wide angle camera of the imaging instrument OSIRIS for the Rosetta mission. , 2017, , .		0
326	Quantum astronomy: scientific background, technologies, achieved results, and future developments with adaptive optics. , 2018, , .		0
327	SPECTRE: a spectro-heliograph for the transition region. , 2018, , .		0
328	Distortion calculation and removal for an off-axis and wide angle camera. , 2019, , .		0
329	From QuantEYE to AquEYE—Instrumentation for Astrophysics on its Shortest Timescales. , 2008, , 171-185.		0
330	Closing gaps to our origins. Experimental Astronomy, 0, , 1.	1.6	0