Gang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8142047/publications.pdf

Version: 2024-02-01

117453 123241 4,791 109 34 61 citations h-index g-index papers 112 112 112 4296 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	<i>Blautia</i> â€"a new functional genus with potential probiotic properties?. Gut Microbes, 2021, 13, 1-21.	4.3	541
2	Quantitative Genetic Background of the Host Influences Gut Microbiomes in Chickens. Scientific Reports, 2013, 3, 1163.	1.6	286
3	Protective Effects of Lactobacillus plantarum CCFM8610 against Acute Cadmium Toxicity in Mice. Applied and Environmental Microbiology, 2013, 79, 1508-1515.	1.4	170
4	Bifidobacterium with the role of 5-hydroxytryptophan synthesis regulation alleviates the symptom of depression and related microbiota dysbiosis. Journal of Nutritional Biochemistry, 2019, 66, 43-51.	1.9	169
5	Towards a psychobiotic therapy for depression: Bifidobacterium breve CCFM1025 reverses chronic stress-induced depressive symptoms and gut microbial abnormalities in mice. Neurobiology of Stress, 2020, 12, 100216.	1.9	159
6	A High-Fat Diet Increases Gut Microbiota Biodiversity and Energy Expenditure Due to Nutrient Difference. Nutrients, 2020, 12, 3197.	1.7	155
7	Effects of different oligosaccharides at various dosages on the composition of gut microbiota and short-chain fatty acids in mice with constipation. Food and Function, 2017, 8, 1966-1978.	2.1	127
8	Protective Effects of Lactobacillus plantarum CCFM8610 against Chronic Cadmium Toxicity in Mice Indicate Routes of Protection besides Intestinal Sequestration. Applied and Environmental Microbiology, 2014, 80, 4063-4071.	1.4	123
9	Lactobacillus casei CCFM419 attenuates type 2 diabetes via a gut microbiota dependent mechanism. Food and Function, 2017, 8, 3155-3164.	2.1	123
10	Bifidobacterium adolescentis Exerts Strain-Specific Effects on Constipation Induced by Loperamide in BALB/c Mice. International Journal of Molecular Sciences, 2017, 18, 318.	1.8	114
11	Lactobacillus plantarum CCFM8661 Alleviates Lead Toxicity in Mice. Biological Trace Element Research, 2012, 150, 264-271.	1.9	110
12	Screening of lactic acid bacteria with potential protective effects against cadmium toxicity. Food Control, 2015, 54, 23-30.	2.8	109
13	Effects of Lactobacillus casei CCFM419 on insulin resistance and gut microbiota in type 2 diabetic mice. Beneficial Microbes, 2017, 8, 421-432.	1.0	104
14	Determining Antioxidant Activities of Lactobacilli Cell-Free Supernatants by Cellular Antioxidant Assay: A Comparison with Traditional Methods. PLoS ONE, 2015, 10, e0119058.	1.1	97
15	Bifidobacterium breve CCFM1025 attenuates major depression disorder via regulating gut microbiome and tryptophan metabolism: A randomized clinical trial. Brain, Behavior, and Immunity, 2022, 100, 233-241.	2.0	95
16	Bifidobacteria exert species-specific effects on constipation in BALB/c mice. Food and Function, 2017, 8, 3587-3600.	2.1	74
17	Effects of <i>Lactobacillus plantarum </i> CCFM0236 on hyperglycaemia and insulin resistance in high-fat and streptozotocin-induced type 2 diabetic mice. Journal of Applied Microbiology, 2016, 121, 1727-1736.	1.4	70
18	Ingestion of <i>Bifidobacterium longum</i> subspecies <i>infantis</i> strain CCFM687 regulated emotional behavior and the central BDNF pathway in chronic stress-induced depressive mice through reshaping the gut microbiota. Food and Function, 2019, 10, 7588-7598.	2.1	60

#	Article	IF	CITATIONS
19	Acetic acid and butyric acid released in large intestine play different roles in the alleviation of constipation. Journal of Functional Foods, 2020, 69, 103953.	1.6	57
20	Intestinal environmental disorders associate with the tissue damages induced by perfluorooctane sulfonate exposure. Ecotoxicology and Environmental Safety, 2020, 197, 110590.	2.9	55
21	Adhesive Bifidobacterium Induced Changes in Cecal Microbiome Alleviated Constipation in Mice. Frontiers in Microbiology, 2019, 10, 1721.	1.5	53
22	Lactic acid bacteria reduce diabetes symptoms in mice by alleviating gut microbiota dysbiosis and inflammation in different manners. Food and Function, 2020, 11, 5898-5914.	2.1	51
23	Screening of adhesive lactobacilli with antagonistic activity against Campylobacter jejuni. Food Control, 2014, 44, 49-57.	2.8	50
24	A comparative study of the antidiabetic effects exerted by live and dead multi-strain probiotics in the type 2 diabetes model of mice. Food and Function, 2016, 7, 4851-4860.	2.1	50
25	Lactic acid bacteria strains relieve hyperuricaemia by suppressing xanthine oxidase activity <i>via</i> a short-chain fatty acid-dependent mechanism. Food and Function, 2021, 12, 7054-7067.	2.1	50
26	Lactobacillus rhamnosus CCFM1107 treatment ameliorates alcohol-induced liver injury in a mouse model of chronic alcohol feeding. Journal of Microbiology, 2015, 53, 856-863.	1.3	48
27	Toxicity assessment of perfluorooctane sulfonate using acute and subchronic male C57BL/6J mouse models. Environmental Pollution, 2016, 210, 388-396.	3.7	48
28	<i>Bifidobacterium adolescentis</i> and <i>Lactobacillus rhamnosus</i> alleviate non-alcoholic fatty liver disease induced by a high-fat, high-cholesterol diet through modulation of different gut microbiota-dependent pathways. Food and Function, 2020, 11, 6115-6127.	2.1	47
29	Perfluorooctanoic acid-induced liver injury is potentially associated with gut microbiota dysbiosis. Chemosphere, 2021, 266, 129004.	4.2	46
30	Bifidobacteria attenuate the development of metabolic disorders, with inter- and intra-species differences. Food and Function, 2018, 9, 3509-3522.	2.1	42
31	Administration of Bifidobacterium breve Improves the Brain Function of A \hat{I}^2 1-42-Treated Mice via the Modulation of the Gut Microbiome. Nutrients, 2021, 13, 1602.	1.7	41
32	Gut microbiota dysbiosis might be responsible to different toxicity caused by Di-(2-ethylhexyl) phthalate exposure in murine rodents. Environmental Pollution, 2020, 261, 114164.	3.7	39
33	Modulation of peanut-induced allergic immune responses by oral lactic acid bacteria-based vaccines in mice. Applied Microbiology and Biotechnology, 2014, 98, 6353-6364.	1.7	38
34	Protective Effects of Lactobacillus plantarum CCFM8246 against Copper Toxicity in Mice. PLoS ONE, 2015, 10, e0143318.	1.1	37
35	Immunomodulatory Effects of Different Lactic Acid Bacteria on Allergic Response and Its Relationship with In Vitro Properties. PLoS ONE, 2016, 11, e0164697.	1.1	37
36	Lactobacillus rhamnosus Strains Relieve Loperamide-Induced Constipation via Different Pathways Independent of Short-Chain Fatty Acids. Frontiers in Cellular and Infection Microbiology, 2020, 10, 423.	1.8	37

#	Article	IF	CITATIONS
37	Potential of Lactobacillus plantarum CCFM639 in Protecting against Aluminum Toxicity Mediated by Intestinal Barrier Function and Oxidative Stress. Nutrients, 2016, 8, 783.	1.7	35
38	The cadmium binding characteristics of a lactic acid bacterium in aqueous solutions and its application for removal of cadmium from fruit and vegetable juices. RSC Advances, 2016, 6, 5990-5998.	1.7	34
39	Lactic acid bacteria alleviate polycystic ovarian syndrome by regulating sex hormone related gut microbiota. Food and Function, 2020, 11, 5192-5204.	2.1	34
40	Lactobacillus plantarum X1 with $\hat{l}\pm$ -glucosidase inhibitory activity ameliorates type 2 diabetes in mice. RSC Advances, 2016, 6, 63536-63547.	1.7	33
41	The binding characters study of lead removal by Lactobacillus plantarum CCFM8661. European Food Research and Technology, 2016, 242, 1621-1629.	1.6	33
42	Metagenomic insights into the effects of oligosaccharides on the microbial composition of cecal contents in constipated mice. Journal of Functional Foods, 2017, 38, 486-496.	1.6	33
43	Probiotics for Mild Cognitive Impairment and Alzheimer's Disease: A Systematic Review and Meta-Analysis. Foods, 2021, 10, 1672.	1.9	33
44	Daily intake of <i>Lactobacillus</i> alleviates autistic-like behaviors by ameliorating the 5-hydroxytryptamine metabolic disorder in VPA-treated rats during weaning and sexual maturation. Food and Function, 2021, 12, 2591-2604.	2.1	33
45	Genetically Engineered Lactococcus lactis Protect against House Dust Mite Allergy in a BALB/c Mouse Model. PLoS ONE, 2014, 9, e109461.	1.1	32
46	Screening of lactobacilli with antagonistic activity against enteroinvasive Escherichia coli. Food Control, 2013, 30, 563-568.	2.8	31
47	Effects of lactobacilli with different regulatory behaviours on tight junctions in mice with dextran sodium sulphate-induced colitis. Journal of Functional Foods, 2018, 47, 107-115.	1.6	30
48	Consumption of Butylated Starch Alleviates the Chronic Restraint Stress-Induced Neurobehavioral and Gut Barrier Deficits Through Reshaping the Gut Microbiota. Frontiers in Immunology, 2021, 12, 755481.	2.2	30
49	Different <i>Bifidobacterium bifidum</i> strains change the intestinal flora composition of mice <i>via</i> different mechanisms to alleviate loperamide-induced constipation. Food and Function, 2021, 12, 6058-6069.	2.1	28
50	Intestinal †Infant-Type' Bifidobacteria Mediate Immune System Development in the First 1000 Days of Life. Nutrients, 2022, 14, 1498.	1.7	28
51	Lactobacillus acidophilus JCM 1132 Strain and Its Mutant with Different Bacteriocin-Producing Behaviour Have Various In Situ Effects on the Gut Microbiota of Healthy Mice. Microorganisms, 2020, 8, 49.	1.6	27
52	Targeting Gut Microbiota Dysbiosis: Potential Intervention Strategies for Neurological Disorders. Engineering, 2020, 6, 415-423.	3.2	26
53	Bifidobacterium adolescentis Isolated from Different Hosts Modifies the Intestinal Microbiota and Displays Differential Metabolic and Immunomodulatory Properties in Mice Fed a High-Fat Diet. Nutrients, 2021, 13, 1017.	1.7	25
54	Lactobacillus plantarum CCFM639 alleviates aluminium toxicity. Applied Microbiology and Biotechnology, 2016, 100, 1891-1900.	1.7	24

#	Article	IF	CITATIONS
55	Unraveling the Microbial Mechanisms Underlying the Psychobiotic Potential of a <i>Bifidobacterium breve</i> Strain. Molecular Nutrition and Food Research, 2021, 65, e2000704.	1.5	24
56	Bifidobacterium breve and Bifidobacterium longum Attenuate Choline-Induced Plasma Trimethylamine N-Oxide Production by Modulating Gut Microbiota in Mice. Nutrients, 2022, 14, 1222.	1.7	24
57	The effects of diet and gut microbiota on the regulation of intestinal mucin glycosylation. Carbohydrate Polymers, 2021, 258, 117651.	5.1	23
58	Lactobacillus paracasei CCFM1229 and Lactobacillus rhamnosus CCFM1228 Alleviated Depression- and Anxiety-Related Symptoms of Chronic Stress-Induced Depression in Mice by Regulating Xanthine Oxidase Activity in the Brain. Nutrients, 2022, 14, 1294.	1.7	23
59	Modulation of the Gut Microbiota Structure with Probiotics and Isoflavone Alleviates Metabolic Disorder in Ovariectomized Mice. Nutrients, 2021, 13, 1793.	1.7	22
60	A randomised, double-blind, placebo-controlled trial of <i>Bifidobacterium bifidum</i> CCFM16 for manipulation of the gut microbiota and relief from chronic constipation. Food and Function, 2022, 13, 1628-1640.	2.1	21
61	Multi-Probiotics ameliorate Major depressive disorder and accompanying gastrointestinal syndromes via serotonergic system regulation. Journal of Advanced Research, 2023, 45, 117-125.	4.4	21
62	Enhancement of bile resistance in <i>Lactobacillus plantarum</i> strains by soy lecithin. Letters in Applied Microbiology, 2015, 61, 13-19.	1.0	19
63	The Effect of Co-infection of Food-Borne Pathogenic Bacteria on the Progression of Campylobacter jejuni Infection in Mice. Frontiers in Microbiology, 2018, 9, 1977.	1.5	19
64	<i>Bifidobacterium longum</i> relieves constipation by regulating the intestinal barrier of mice. Food and Function, 2022, 13, 5037-5049.	2.1	19
65	Protective effects of lactic acid bacteria-fermented soymilk against chronic cadmium toxicity in mice. RSC Advances, 2015, 5, 4648-4658.	1.7	18
66	Determining antioxidant activities of lactobacilli by cellular antioxidant assay in mammal cells. Journal of Functional Foods, 2015, 19, 554-562.	1.6	18
67	Lactic acid bacteria alleviate liver damage caused by perfluorooctanoic acid exposure via antioxidant capacity, biosorption capacity and gut microbiota regulation. Ecotoxicology and Environmental Safety, 2021, 222, 112515.	2.9	18
68	Integrative Metabolomic Characterization Reveals the Mediating Effect of Bifidobacterium breve on Amino Acid Metabolism in a Mouse Model of Alzheimer's Disease. Nutrients, 2022, 14, 735.	1.7	18
69	Butylated starch alleviates polycystic ovary syndrome by stimulating the secretion of peptide tyrosine-tyrosine and regulating faecal microbiota. Carbohydrate Polymers, 2022, 287, 119304.	5.1	18
70	Metabolomics analysis reveals heavy metal copper-induced cytotoxicity in HT-29 human colon cancer cells. RSC Advances, 2016, 6, 78445-78456.	1.7	17
71	Suppression of dust mite allergy by mucosal delivery of a hypoallergenic derivative in a mouse model. Applied Microbiology and Biotechnology, 2015, 99, 4309-4319.	1.7	16
72	The Protective Effect of Myristica fragrans Houtt. Extracts Against Obesity and Inflammation by Regulating Free Fatty Acids Metabolism in Nonalcoholic Fatty Liver Disease. Nutrients, 2020, 12, 2507.	1.7	16

#	Article	IF	CITATIONS
73	Lactobacillus reuteri CCFM8631 Alleviates Hypercholesterolaemia Caused by the Paigen Atherogenic Diet by Regulating the Gut Microbiota. Nutrients, 2022, 14, 1272.	1.7	16
74	Bifidobacterium longum CCFM1077 Ameliorated Neurotransmitter Disorder and Neuroinflammation Closely Linked to Regulation in the Kynurenine Pathway of Autistic-like Rats. Nutrients, 2022, 14, 1615.	1.7	15
75	A cellular model for screening of lactobacilli that can enhance tight junctions. RSC Advances, 2016, 6, 111812-111821.	1.7	14
76	Lactobacillus plantarum CCFM639 can prevent aluminium-induced neural injuries and abnormal behaviour in mice. Journal of Functional Foods, 2017, 30, 142-150.	1.6	14
77	Bifidobacterium bifidum Shows More Diversified Ways of Relieving Non-Alcoholic Fatty Liver Compared with Bifidobacterium adolescentis. Biomedicines, 2022, 10, 84.	1.4	14
78	Cellular model to assess the antioxidant activity of lactobacilli. RSC Advances, 2015, 5, 37626-37634.	1.7	13
79	Systematic understanding of the potential manganese-adsorption components of a screened Lactobacillus plantarum CCFM436. RSC Advances, 2016, 6, 102804-102813.	1.7	13
80	Lactic acid bacteria exhibit similar antioxidant capacities in <i>Caenorhabditis elegans</i> and <i>Campylobacter jejuni</i> infected mice. RSC Advances, 2020, 10, 3329-3342.	1.7	13
81	Evidence from comparative genomic analyses indicating that Lactobacillus-mediated irritable bowel syndrome alleviation is mediated by conjugated linoleic acid synthesis. Food and Function, 2021, 12, 1121-1134.	2.1	13
82	Sulforaphane ameliorates non-alcoholic fatty liver disease in mice by promoting FGF21/FGFR1 signaling pathway. Acta Pharmacologica Sinica, 2022, 43, 1473-1483.	2.8	13
83	Oral application of lactic acid bacteria following treatment with antibiotics inhibits allergic airway inflammation. Journal of Applied Microbiology, 2015, 119, 809-817.	1.4	12
84	System-wide analysis of manganese starvation-induced metabolism in key elements of Lactobacillus plantarum. RSC Advances, 2017, 7, 12959-12968.	1.7	12
85	An <i>in vitro</i> screening method for probiotics with antidepressant-like effect using the enterochromaffin cell model. Food and Function, 2021, 12, 646-655.	2.1	12
86	The autistic-like behaviors development during weaning and sexual maturation in VPA-induced autistic-like rats is accompanied by gut microbiota dysbiosis. PeerJ, 2021, 9, e11103.	0.9	12
87	Lactobacillus strains derived from human gut ameliorate metabolic disorders via modulation of gut microbiota composition and short-chain fatty acids metabolism. Beneficial Microbes, 2021, 12, 267-281.	1.0	12
88	A psychobiotic approach to the treatment of depression: A systematic review and meta-analysis. Journal of Functional Foods, 2022, 91, 104999.	1.6	12
89	Screening of potential probiotic lactic acid bacteria based on gastrointestinal properties and perfluorooctanoate toxicity. Applied Microbiology and Biotechnology, 2016, 100, 6755-6766.	1.7	11
90	Psychobiotics as a novel strategy for alleviating anxiety and depression. Journal of Functional Foods, 2021, 86, 104718.	1.6	11

#	Article	IF	Citations
91	Myristica fragrans Extract Regulates Gut Microbes and Metabolites to Attenuate Hepatic Inflammation and Lipid Metabolism Disorders via the AhR–FAS and NF-κB Signaling Pathways in Mice with Non-Alcoholic Fatty Liver Disease. Nutrients, 2022, 14, 1699.	1.7	11
92	Partial characterisation of an anti-listeria substance produced by Pediococcus acidilactici P9. International Dairy Journal, 2014, 34, 275-279.	1.5	10
93	Protective effect of Streptococcus thermophilus CCFM218 against house dust mite allergy in a mouse model. Food Control, 2015, 50, 283-290.	2.8	10
94	The Diversity of the CRISPR-Cas System and Prophages Present in the Genome Reveals the Co-evolution of Bifidobacterium pseudocatenulatum and Phages. Frontiers in Microbiology, 2020, 11, 1088.	1.5	10
95	Pediococcus acidilactici CCFM6432 mitigates chronic stress-induced anxiety and gut microbial abnormalities. Food and Function, 2021, 12, 11241-11249.	2.1	10
96	<i>Lactiplantibacillus plantarum</i> CCFM1019 attenuate polycystic ovary syndrome through butyrate dependent gutâ€"brain mechanism. Food and Function, 2022, 13, 1380-1392.	2.1	10
97	Mucosal delivery of allergen peptides expressed by Lactococcus lactis inhibit allergic responses in a BALB/c mouse model. Applied Microbiology and Biotechnology, 2016, 100, 1915-1924.	1.7	9
98	Lactic acid bacteria alleviate di-(2-ethylhexyl) phthalate-induced liver and testis toxicity via their bio-binding capacity, antioxidant capacity and regulation of the gut microbiota. Environmental Pollution, 2022, 305, 119197.	3.7	9
99	Targeting the Gut Microbiota for Remediating Obesity and Related Metabolic Disorders. Journal of Nutrition, 2021, 151, 1703-1716.	1.3	7
100	Perinatal transmission of a probiotic <i>Bifidobacterium</i> strain protects against early life stress-induced mood and gastrointestinal motility disorders. Food and Function, 2022, 13, 7520-7528.	2.1	7
101	Enhancement of ester formation in Camembert cheese by addition of ethanol. International Journal of Dairy Technology, 2017, 70, 220-227.	1.3	6
102	Quorum Sensing of Lactic Acid Bacteria: Progress and Insights. Food Reviews International, 2023, 39, 4781-4792.	4.3	6
103	Lactic acid bacteria that activate immune gene expression in Caenorhabditis elegans can antagonise Campylobacter jejuni infection in nematodes, chickens and mice. BMC Microbiology, 2021, 21, 169.	1.3	5
104	The emerging role of the gut microbiome in polycystic ovary syndrome. F&S Reviews, 2021, 2, 214-226.	0.7	5
105	Lactic Acid Bacteria and Host Immunity. , 2019, , 261-296.		4
106	Efficacy of <i>Saccharomyces Boulardii</i> Metabolism during Fermentation of Milk Fortified with Wheat Grain Juice. Food Science and Technology Research, 2019, 25, 657-665.	0.3	3
107	Lactic Acid Bacteria and Foodborne Pathogens. , 2018, , 183-212.		2
108	Lactobacillus fermentum Stimulates Intestinal Secretion of Immunoglobulin A in an Individual-Specific Manner. Foods, 2022, 11, 1229.	1.9	2

ARTICLE IF CITATIONS

Lactic Acid Bacteria in Animal Breeding and Aquaculture. , 2019, , 257-283.

1