
Gal Haspel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/814189/publications.pdf Version: 2024-02-01

CAL HASDEL

#	Article	IF	CITATIONS
1	Neuronal Microsurgery with an Yb-Doped Fiber Femtosecond Laser. Methods in Molecular Biology, 2022, 2468, 319-328.	0.4	1
2	Evolutionary and homeostatic changes in morphology of visual dendrites of Mauthner cells in <scp><i>Astyanax</i></scp> blind cavefish. Journal of Comparative Neurology, 2021, 529, 1779-1786.	0.9	6
3	A low power flexible dielectric barrier discharge disinfects surfaces and improves the action of hydrogen peroxide. Scientific Reports, 2021, 11, 4626.	1.6	19
4	Resilience of neural networks for locomotion. Journal of Physiology, 2021, 599, 3825-3840.	1.3	15
5	Inhibition Underlies Fast Undulatory Locomotion in <i>Caenorhabditis elegans</i> . ENeuro, 2021, 8, ENEURO.0241-20.2020.	0.9	5
6	Ytterbium-doped fibre femtosecond laser offers robust operation with deep and precise microsurgery of C. elegans neurons. Scientific Reports, 2020, 10, 4545.	1.6	15
7	Morphological malleability of the lateral line allows for surface fish (<i>Astyanax mexicanus</i>) adaptation to cave environments. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2020, 334, 511-517.	0.6	5
8	Elegantly. , 2020, , 3-29.		7
9	Expansion microscopy of C. elegans. ELife, 2020, 9, .	2.8	59
10	<scp>TOR</scp> â€mediated regulation of metabolism in aging. Aging Cell, 2017, 16, 1219-1233.	3.0	98
11	A New Mechanism of Sediment Attachment to Oil in Turbulent Flows: Projectile Particles. Environmental Science & Technology, 2017, 51, 11020-11028.	4.6	35
12	Identification of a novel spinal nociceptive-motor gate control for Aĺ pain stimuli in rats. ELife, 2017, 6,	2.8	26
13	A Gateway Book to Neurobiology. BioScience, 2016, 66, 520-521.	2.2	Ο
14	Sensory Arsenal on the Stinger of the Parasitoid Jewel Wasp and Its Possible Role in Identifying Cockroach Brains. PLoS ONE, 2014, 9, e89683.	1.1	26
15	Neurobiology of Caenorhabditis elegans Locomotion: Where Do We Stand?. BioScience, 2014, 64, 476-486.	2.2	96
16	Direct activation of the Mauthner cell by electric field pulses drives ultrarapid escape responses. Journal of Neurophysiology, 2014, 112, 834-844.	0.9	88
17	A connectivity model for the locomotor network of Caenorhabditis elegans. Worm, 2012, 1, 125-128.	1.0	11
18	By the teeth of their skin, cavefish find their way. Current Biology, 2012, 22, R629-R630.	1.8	17

GAL HASPEL

#	Article	IF	CITATIONS
19	A Perimotor Framework Reveals Functional Segmentation in the Motoneuronal Network Controlling Locomotion in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 2011, 31, 14611-14623.	1.7	42
20	Motoneurons Dedicated to Either Forward or Backward Locomotion in the Nematode <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 2010, 30, 11151-11156.	1.7	70
21	Ablation of Rat TRPV1-Expressing Adelta/C-Fibers with Resiniferatoxin: Analysis of Withdrawal Behaviors, Recovery of Function and Molecular Correlates. Molecular Pain, 2010, 6, 1744-8069-6-94.	1.0	67
22	C. elegans G Protein Regulator RGS-3 Controls Sensitivity to Sensory Stimuli. Neuron, 2007, 53, 39-52.	3.8	59
23	Parasitoid wasp sting: A cocktail of GABA, taurine, and β-alanine opens chloride channels for central synaptic block and transient paralysis of a cockroach host. Journal of Neurobiology, 2006, 66, 811-820.	3.7	39
24	Parasitoid wasp affects metabolism of cockroach host to favor food preservation for its offspring. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2005, 191, 529-534.	0.7	24
25	Wasp manipulates cockroach behavior by injecting Venom Cocktail Into Prey Central Nervous System. Acta Biologica Hungarica, 2004, 55, 103-112.	0.7	0
26	Channel-forming activity in the venom of the cockroach-hunting wasp, Ampulex compressa. Toxicon, 2004, 43, 721-727.	0.8	4
27	Wasp venom blocks central cholinergic synapses to induce transient paralysis in cockroach prey. Journal of Neurobiology, 2003, 54, 628-637.	3.7	29
28	Direct injection of venom by a predatory wasp into cockroach brain. Journal of Neurobiology, 2003, 56, 287-292.	3.7	61
29	Localization of the site of effect of a wasp's venom in the cockroach escape circuitry. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1999, 184, 333-345.	0.7	23
30	Venom of a parasitoid wasp induces prolonged grooming in the cockroach. Journal of Experimental Biology, 1999, 202, 957-964.	0.8	69