
Sakthivel Sadayappan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8141828/publications.pdf Version: 2024-02-01

SAKTHIVEL SADAVADDAN

#	Article	IF	CITATIONS
1	Inhibiting cardiac myeloperoxidase alleviates the relaxation defect in hypertrophic cardiomyocytes. Cardiovascular Research, 2022, 118, 517-530.	3.8	27
2	Lipids: a Potential Molecular Pathway Towards Diastolic Dysfunction in Youth-Onset Type 2 Diabetes. Current Atherosclerosis Reports, 2022, 24, 109-117.	4.8	4
3	Optimization of tamoxifen-induced gene regulation in cardiovascular research. , 2022, 2, .		Ο
4	Modulation of myosin by cardiac myosin binding protein-C peptides improves cardiac contractility in ex-vivo experimental heart failure models. Scientific Reports, 2022, 12, 4337.	3.3	2
5	GSK-3β Localizes to the Cardiac Z-Disc to Maintain Length Dependent Activation. Circulation Research, 2022, 130, 871-886.	4.5	8
6	Rewiring of 3D Chromatin Topology Orchestrates Transcriptional Reprogramming and the Development of Human Dilated Cardiomyopathy. Circulation, 2022, 145, 1663-1683.	1.6	15
7	Depletion of skeletal muscle satellite cells attenuates pathology in muscular dystrophy. Nature Communications, 2022, 13, .	12.8	22
8	Knockout of Sorbin And SH3 Domain Containing 2 (Sorbs2) in Cardiomyocytes Leads to Dilated Cardiomyopathy in Mice. Journal of the American Heart Association, 2022, 11, .	3.7	5
9	An Image Registration Framework to Estimate 3D Myocardial Strains from Cine Cardiac MRI in Mice. Lecture Notes in Computer Science, 2021, 12738, 273-284.	1.3	4
10	Genetic Modifiers of Hereditary Neuromuscular Disorders and Cardiomyopathy. Cells, 2021, 10, 349.	4.1	3
11	The N terminus of myosin-binding protein C extends toward actin filaments in intact cardiac muscle. Journal of General Physiology, 2021, 153, .	1.9	30
12	Upregulated Angiogenesis Is Incompetent to Rescue Dilated Cardiomyopathy Phenotype in Mice. Cells, 2021, 10, 771.	4.1	2
13	Fast skeletal myosin-binding protein-C regulates fast skeletal muscle contraction. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
14	The CO-C1f Region of Cardiac Myosin Binding Protein-C Induces Pro-Inflammatory Responses in Fibroblasts via TLR4 Signaling. Cells, 2021, 10, 1326.	4.1	5
15	Impaired Right Ventricular Calcium Cycling Is an Early Risk Factor in R14del-Phospholamban Arrhythmias. Journal of Personalized Medicine, 2021, 11, 502.	2.5	12
16	Amino terminus of cardiac myosin binding protein-C regulates cardiac contractility. Journal of Molecular and Cellular Cardiology, 2021, 156, 33-44.	1.9	17
17	Mutations in myosin S2 alter cardiac myosin-binding protein-C interaction in hypertrophic cardiomyopathy in a phosphorylation-dependent manner. Journal of Biological Chemistry, 2021, 297, 100836.	3.4	9
18	Mitochondrial nucleoid in cardiac homeostasis: bidirectional signaling of mitochondria and nucleus in cardiac diseases. Basic Research in Cardiology, 2021, 116, 49.	5.9	5

#	Article	IF	CITATIONS
19	Monoclonal Antibody-Based Immunotherapy and Its Role in the Development of Cardiac Toxicity. Cancers, 2021, 13, 86.	3.7	14
20	South Asian-Specific MYBPC3Δ25bp Deletion Carriers Display Hypercontraction and Impaired Diastolic Function Under Exercise Stress. Frontiers in Cardiovascular Medicine, 2021, 8, 766339.	2.4	1
21	Featured characteristics and pivotal roles of satellite cells in skeletal muscle regeneration. Journal of Muscle Research and Cell Motility, 2020, 41, 341-353.	2.0	9
22	Tissue-level inflammation and ventricular remodeling in hypertrophic cardiomyopathy. Journal of Thrombosis and Thrombolysis, 2020, 49, 177-183.	2.1	46
23	Genetic, clinical, molecular, and pathogenic aspects of the South Asian–specific polymorphic MYBPC3Δ25bp variant. Biophysical Reviews, 2020, 12, 1065-1084.	3.2	12
24	A Novel Homozygous Intronic Variant in TNNT2 Associates With Feline Cardiomyopathy. Frontiers in Physiology, 2020, 11, 608473.	2.8	7
25	Receptor-independent modulation of cAMP-dependent protein kinase and protein phosphatase signaling in cardiac myocytes by oxidizing agents. Journal of Biological Chemistry, 2020, 295, 15342-15365.	3.4	4
26	Nuclear numbers in syncytial muscle fibers promote size but limit the development of larger myonuclear domains. Nature Communications, 2020, 11, 6287.	12.8	57
27	Basic Cardiovascular Sciences Scientific Sessions 2020. Circulation Research, 2020, 127, 1459-1467.	4.5	0
28	Phosphorylation of cardiac myosin–binding protein-C contributes to calcium homeostasis. Journal of Biological Chemistry, 2020, 295, 11275-11291.	3.4	16
29	South Asian–Specific <i>MYBPC3</i> ^{<i>Δ25bp</i>} Intronic Deletion and Its Role in Cardiomyopathies and Heart Failure. Circulation Genomic and Precision Medicine, 2020, 13, e002986.	3.6	6
30	Reduced Left Atrial Emptying Fraction and Chymase Activation in Pathophysiology of Primary MitralÂRegurgitation. JACC Basic To Translational Science, 2020, 5, 109-122.	4.1	10
31	Distal Arthrogryposis and Lethal Congenital Contracture Syndrome – An Overview. Frontiers in Physiology, 2020, 11, 689.	2.8	14
32	Designing Human InÂVitro Models for Drug Development. Journal of the American College of Cardiology, 2020, 75, 587-589.	2.8	3
33	Skeletal Myosin-Binding Protein C Isoforms Differentially Regulate Fast- and Slow-Twitch Skeletal Muscle Function. Biophysical Journal, 2020, 118, 278a.	0.5	0
34	The potential roles of Von Willebrand factor and neutrophil extracellular traps in the natural history of hypertrophic and hypertensive cardiomyopathy. Thrombosis Research, 2020, 192, 78-87.	1.7	3
35	An acute immune response underlies the benefit of cardiac stemÂcell therapy. Nature, 2020, 577, 405-409.	27.8	392
36	Myocyte-derived Myomaker expression is required for regenerative fusion but exacerbates membrane instability in dystrophic myofibers. JCI Insight, 2020, 5, .	5.0	24

#	Article	IF	CITATIONS
37	Inhibition of Senescenceâ€Associated Genes <i>Rb1</i> and <i>Meis2</i> in Adult Cardiomyocytes Results in Cell Cycle Reentry and Cardiac Repair Post–Myocardial Infarction. Journal of the American Heart Association, 2019, 8, e012089.	3.7	49
38	KLF2 in Myeloid Lineage Cells Regulates the Innate Immune Response during Skeletal Muscle Injury and Regeneration. IScience, 2019, 17, 334-346.	4.1	15
39	Basic Cardiovascular Sciences Scientific Sessions 2019. Circulation Research, 2019, 125, 924-931.	4.5	1
40	The potential role of neddylation in pre- and postnatal cardiac remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H276-H278.	3.2	0
41	Skeletal MyBP-C isoforms tune the molecular contractility of divergent skeletal muscle systems. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21882-21892.	7.1	31
42	Dilated cardiomyopathy-mediated heart failure induces a unique skeletal muscle myopathy with inflammation. Skeletal Muscle, 2019, 9, 4.	4.2	12
43	Hypertrophic cardiomyopathy mutations in <i>MYBPC3</i> dysregulate myosin. Science Translational Medicine, 2019, 11, .	12.4	133
44	Cardiac myosin binding protein-C phosphorylation regulates the super-relaxed state of myosin. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11731-11736.	7.1	68
45	Altered C10 domain in cardiac myosin binding protein-C results in hypertrophic cardiomyopathy. Cardiovascular Research, 2019, 115, 1986-1997.	3.8	19
46	Association of intronic DNA methylation and hydroxymethylation alterations in the epigenetic etiology of dilated cardiomyopathy. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H168-H180.	3.2	22
47	Ablation of the calpain-targeted site in cardiac myosin binding protein-C is cardioprotective during ischemia-reperfusion injury. Journal of Molecular and Cellular Cardiology, 2019, 129, 236-246.	1.9	20
48	Epigenetic modification: a regulatory mechanism in essential hypertension. Hypertension Research, 2019, 42, 1099-1113.	2.7	57
49	Cardiovascular Leaders Are Made, not Born. Circulation Research, 2019, 124, 484-487.	4.5	1
50	MYBPC3 truncation mutations enhance actomyosin contractile mechanics in human hypertrophic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2019, 127, 165-173.	1.9	48
51	Hippo Deficiency Leads to Cardiac Dysfunction Accompanied by Cardiomyocyte Dedifferentiation During Pressure Overload. Circulation Research, 2019, 124, 292-305.	4.5	82
52	ERK1/2 signaling induces skeletal muscle slow fiber-type switching and reduces muscular dystrophy disease severity. JCI Insight, 2019, 4, .	5.0	49
53	Myonuclear accretion is a determinant of exercise-induced remodeling in skeletal muscle. ELife, 2019, 8, .	6.0	78
54	Contractile responses to endothelin-1 are regulated by PKC phosphorylation of cardiac myosin binding protein-C in rat ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2018, 117, 1-18.	1.9	19

#	Article	IF	CITATIONS
55	Association of Cardiomyopathy With <i>MYBPC3</i> D389V and <i>MYBPC3^{Δ25bp}</i> Intronic Deletion in South Asian Descendants. JAMA Cardiology, 2018, 3, 481.	6.1	31
56	Loss of microRNA-128 promotes cardiomyocyte proliferation and heart regeneration. Nature Communications, 2018, 9, 700.	12.8	124
57	Probenecid Improves Cardiac Function in Patients With Heart Failure With Reduced Ejection Fraction In Vivo and Cardiomyocyte Calcium Sensitivity In Vitro. Journal of the American Heart Association, 2018, 7, .	3.7	23
58	Skeletal myosin binding protein-C isoforms regulate thin filament activity in a Ca2+-dependent manner. Scientific Reports, 2018, 8, 2604.	3.3	38
59	My Life, My Heart, and My(osin) Binding Protein-C. Circulation Research, 2018, 122, 918-920.	4.5	1
60	Assessing the multiscale architecture of muscular tissue with Qâ€space magnetic resonance imaging: Review. Microscopy Research and Technique, 2018, 81, 162-170.	2.2	8
61	Skeletal myosin binding protein-C: An increasingly important regulator of striated muscle physiology. Archives of Biochemistry and Biophysics, 2018, 660, 121-128.	3.0	29
62	Calcium-Dependent Interaction Occurs between Slow Skeletal Myosin Binding Protein C and Calmodulin. Magnetochemistry, 2018, 4, 1.	2.4	7
63	Enhancing resolution and contrast in second-harmonic generation microscopy using an advanced maximum likelihood estimation restoration method. Proceedings of SPIE, 2017, , .	0.8	0
64	Application of an advanced maximum likelihood estimation restoration method for enhancedâ€resolution and contrast in secondâ€harmonic generation microscopy. Journal of Microscopy, 2017, 267, 397-408.	1.8	8
65	Cardiac Myosin Binding Protein-C Autoantibodies Are Potential Early Indicators of Cardiac Dysfunction andÂPatient Outcome in Acute CoronaryÂSyndrome. JACC Basic To Translational Science, 2017, 2, 122-131.	4.1	3
66	Cardiac inflammation in genetic dilated cardiomyopathy caused by MYBPC3 mutation. Journal of Molecular and Cellular Cardiology, 2017, 102, 83-93.	1.9	39
67	MicroRNA-210-mediated proliferation, survival, and angiogenesis promote cardiac repair post myocardial infarction in rodents. Journal of Molecular Medicine, 2017, 95, 1369-1385.	3.9	81
68	The Myofilament Field Revisited in the Age of Cellular and Molecular Biology. Circulation Research, 2017, 121, 601-603.	4.5	3
69	Myofilaments: Movers and Rulers of the Sarcomere. , 2017, 7, 675-692.		32
70	Cardiovascular Early Careers: Past and Present. Circulation Research, 2017, 121, 100-102.	4.5	4
71	The naked mole-rat exhibits an unusual cardiac myofilament protein profile providing new insights into heart function of this naturally subterranean rodent. Pflugers Archiv European Journal of Physiology, 2017, 469, 1603-1613.	2.8	20
72	Usefulness of Released Cardiac Myosin Binding Protein-C as a Predictor of Cardiovascular Events. American Journal of Cardiology, 2017, 120, 1501-1507.	1.6	6

SAKTHIVEL SADAYAPPAN

#	Article	IF	CITATIONS
73	Hypertrophic cardiomyopathy clinical phenotype is independent of gene mutation and mutation dosage. PLoS ONE, 2017, 12, e0187948.	2.5	48
74	High-Throughput Diagnostic Assay for a Highly Prevalent Cardiomyopathy-Associated MYBPC3 Variant. Journal of Molecular Biomarkers & Diagnosis, 2016, 07, .	0.4	3
75	Recent Advances in the Molecular Genetics of Familial Hypertrophic Cardiomyopathy in South Asian Descendants. Frontiers in Physiology, 2016, 7, 499.	2.8	13
76	Alterations in Multiâ€Scale Cardiac Architecture in Association With Phosphorylation of Myosin Binding Proteinâ€C. Journal of the American Heart Association, 2016, 5, e002836.	3.7	17
77	N-terminal fragment of cardiac myosin binding protein-C triggers pro-inflammatory responses in vitro. Journal of Molecular and Cellular Cardiology, 2016, 99, 47-56.	1.9	20
78	<i>S</i> â€glutathiolation impairs phosphoregulation and function of cardiac myosinâ€binding protein C in human heart failure. FASEB Journal, 2016, 30, 1849-1864.	0.5	38
79	Cardiac muscle organization revealed in 3-D by imaging whole-mount mouse hearts using two-photon fluorescence and confocal microscopy. BioTechniques, 2015, 59, 295-308.	1.8	19
80	Oxidative Stress in Dilated Cardiomyopathy Caused by <i>MYBPC3</i> Mutation. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-14.	4.0	33
81	Orientation of Myosin Binding Protein C in the Cardiac Muscle Sarcomere Determined by Domain-Specific Immuno-EM. Journal of Molecular Biology, 2015, 427, 274-286.	4.2	43
82	Phosphoregulation of Cardiac Inotropy via Myosin Binding Protein-C During Increased Pacing Frequency or β ₁ -Adrenergic Stimulation. Circulation: Heart Failure, 2015, 8, 595-604.	3.9	43
83	A Hypertrophic Cardiomyopathy-associated MYBPC3 Mutation Common in Populations of South Asian Descent Causes Contractile Dysfunction. Journal of Biological Chemistry, 2015, 290, 5855-5867.	3.4	21
84	Molecular Screen Identifies Cardiac Myosin–Binding Protein-C as a Protein Kinase G-lα Substrate. Circulation: Heart Failure, 2015, 8, 1115-1122.	3.9	31
85	Cardiac Myosin-binding Protein C and Troponin-I Phosphorylation Independently Modulate Myofilament Length-dependent Activation. Journal of Biological Chemistry, 2015, 290, 29241-29249.	3.4	48
86	Haploinsufficiency of MYBPC3 exacerbates the development of hypertrophic cardiomyopathy in heterozygous mice. Journal of Molecular and Cellular Cardiology, 2015, 79, 234-243.	1.9	58
87	Interactions between the Regulatory Subunit of Type I Protein Kinase A and p90 Ribosomal S6 Kinase1 Regulate Cardiomyocyte Apoptosis. Molecular Pharmacology, 2014, 85, 357-367.	2.3	4
88	Desensitization of Myofilaments to Ca ²⁺ as a Therapeutic Target for Hypertrophic Cardiomyopathy With Mutations in Thin Filament Proteins. Circulation: Cardiovascular Genetics, 2014, 7, 132-143.	5.1	61
89	Myocardial Infarction-induced N-terminal Fragment of Cardiac Myosin-binding Protein C (cMyBP-C) Impairs Myofilament Function in Human Myocardium. Journal of Biological Chemistry, 2014, 289, 8818-8827.	3.4	39
90	Surviving the infarct: A profile of cardiac myosin binding protein pathogenicity, diagnostic utility, and proteomics in the ischemic myocardium. Proteomics - Clinical Applications, 2014, 8, 569-577.	1.6	11

SAKTHIVEL SADAYAPPAN

#	Article	IF	CITATIONS
91	Ceramide-mediated depression in cardiomyocyte contractility through PKC activation and modulation of myofilament protein phosphorylation. Basic Research in Cardiology, 2014, 109, 445.	5.9	21
92	Transmural heterogeneity of cellular level power output is reduced in human heart failure. Journal of Molecular and Cellular Cardiology, 2014, 72, 1-8.	1.9	49
93	Cardiac myosin binding protein-C as a central target of cardiac sarcomere signaling: a special mini review series. Pflugers Archiv European Journal of Physiology, 2014, 466, 195-200.	2.8	33
94	MYBPC3's alternate ending: consequences and therapeutic implications of a highly prevalent 25Âbp deletion mutation. Pflugers Archiv European Journal of Physiology, 2014, 466, 207-213.	2.8	21
95	Sarcomere Mutation-Specific Expression Patterns in Human Hypertrophic Cardiomyopathy. Circulation: Cardiovascular Genetics, 2014, 7, 434-443.	5.1	82
96	Effects of a myofilament calcium sensitizer on left ventricular systolic and diastolic function in rats with volume overload heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1605-H1617.	3.2	16
97	Release kinetics of circulating cardiac myosin binding protein-C following cardiac injury. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H547-H556.	3.2	20
98	Contractile dysfunction in a mouse model expressing a heterozygous <i>MYBPC3</i> mutation associated with hypertrophic cardiomyopathy. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H807-H815.	3.2	45
99	Phosphorylation of cMyBP-C Affects Contractile Mechanisms in a Site-specific Manner. Biophysical Journal, 2014, 106, 1112-1122.	0.5	21
100	Sham Surgery and Inter-Individual Heterogeneity Are Major Determinants of Monocyte Subset Kinetics in a Mouse Model of Myocardial Infarction. PLoS ONE, 2014, 9, e98456.	2.5	15
101	Cardiac Myosin Binding Protein C Phosphorylation Affects Cross-Bridge Cycle's Elementary Steps in a Site-Specific Manner. PLoS ONE, 2014, 9, e113417.	2.5	14
102	Protein kinase Câ€site phosphorylation of cardiac myosin binding proteinâ€C decreases crossâ€bridge kinetics (1081.5). FASEB Journal, 2014, 28, 1081.5.	0.5	1
103	Enzymeâ€linked immunosorbent assay is a viable method for determining release kinetics of cardiac myosin binding proteinâ€C following isoproterenolâ€induced cardiac injury (1073.8). FASEB Journal, 2014, 28, 1073.8.	O.5	Ο
104	Abstract 186: Identification of Novel Protein Kinase G I Alpha Antiremodeling Substrates in the Myocardium. Circulation Research, 2014, 115, .	4.5	0
105	Abstract 20232: Haploinsufficiency of MYBPC3 in the Development of Hypertrophic Cardiomyopathy. Circulation, 2014, 130, .	1.6	Ο
106	Abstract 19086: Myofilament Proteins of the Naked Mole-rat Heart Reflect Low Basal Species Cardiac Function. Circulation, 2014, 130, .	1.6	0
107	CSK3β Phosphorylates Newly Identified Site in the Proline-Alanine–Rich Region of Cardiac Myosin–Binding Protein C and Alters Cross-Bridge Cycling Kinetics in Human. Circulation Research, 2013, 112, 633-639.	4.5	48
108	In vivo and in vitro cardiac responses to beta-adrenergic stimulation in volume-overload heart failure. Journal of Molecular and Cellular Cardiology, 2013, 57, 47-58.	1.9	25

#	Article	IF	CITATIONS
109	Myofilament Ca2+ desensitization mediates positive lusitropic effect of neuronal nitric oxide synthase in left ventricular myocytes from murine hypertensive heart. Journal of Molecular and Cellular Cardiology, 2013, 60, 107-115.	1.9	38
110	Perturbed Length-Dependent Activation in Human Hypertrophic Cardiomyopathy With Missense Sarcomeric Gene Mutations. Circulation Research, 2013, 112, 1491-1505.	4.5	191
111	Finding the missing link: Disulfideâ€containing proteins via a highâ€throughput proteomics approach. Proteomics, 2013, 13, 3245-3246.	2.2	1
112	A Sensitive and Specific Quantitation Method for Determination of Serum Cardiac Myosin Binding Protein-C by Electrochemiluminescence Immunoassay. Journal of Visualized Experiments, 2013, , .	0.3	13
113	Agonist Activated PKCβII Translocation and Modulation of Cardiac Myocyte Contractile Function. Scientific Reports, 2013, 3, 1971.	3.3	6
114	Cardiac Myosin Binding Protein-C Plays No Regulatory Role in Skeletal Muscle Structure and Function. PLoS ONE, 2013, 8, e69671.	2.5	32
115	Enhanced Cardiac Function in Gravin Mutant Mice Involves Alterations in the β-Adrenergic Receptor Signaling Cascade. PLoS ONE, 2013, 8, e74784.	2.5	21
116	Abstract 360: IL-10-inhibits Pressure Overload-induced Homing, Proliferation And Differentiation Of Non-resident Fibroblast Progenitors And Improve Heart Function Circulation Research, 2013, 113, .	4.5	0
117	Increase in cardiac myosin binding protein-C plasma levels is a sensitive and cardiac-specific biomarker of myocardial infarction. American Journal of Cardiovascular Disease, 2013, 3, 60-70.	0.5	15
118	Protein kinase D increases maximal Ca ²⁺ -activated tension of cardiomyocyte contraction by phosphorylation of cMyBP-C-Ser ³¹⁵ . American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H323-H331.	3.2	20
119	Interleukin-10 Treatment Attenuates Pressure Overload–Induced Hypertrophic Remodeling and Improves Heart Function via Signal Transducers and Activators of Transcription 3–Dependent Inhibition of Nuclear Factor-κB. Circulation, 2012, 126, 418-429.	1.6	160
120	Cardiac myosin binding protein-C: a potential early-stage, cardiac-specific biomarker of ischemia-reperfusion injury. Biomarkers in Medicine, 2012, 6, 69-72.	1.4	11
121	Structural Insight into Unique Cardiac Myosin-binding Protein-C Motif. Journal of Biological Chemistry, 2012, 287, 8254-8262.	3.4	47
122	Contractile Dysfunction Irrespective of the Mutant Protein in Human Hypertrophic Cardiomyopathy With Normal Systolic Function. Circulation: Heart Failure, 2012, 5, 36-46.	3.9	127
123	Protein kinase C depresses cardiac myocyte power output and attenuates myofilament responses induced by protein kinase A. Journal of Muscle Research and Cell Motility, 2012, 33, 439-448.	2.0	17
124	Cardiac myosin binding protein-C is a potential diagnostic biomarker for myocardial infarction. Journal of Molecular and Cellular Cardiology, 2012, 52, 154-164.	1.9	62
125	Unique single molecule binding of cardiac myosin binding protein-C to actin and phosphorylation-dependent inhibition of actomyosin motility requires 17 amino acids of the motif domain. Journal of Molecular and Cellular Cardiology, 2012, 52, 219-227.	1.9	77
126	Pathogenic properties of the N-terminal region of cardiac myosin binding protein-C in vitro. Journal of Muscle Research and Cell Motility, 2012, 33, 17-30.	2.0	32

SAKTHIVEL SADAYAPPAN

#	Article	IF	CITATIONS
127	Cardiac myosin binding protein-C: redefining its structure and function. Biophysical Reviews, 2012, 4, 93-106.	3.2	71
128	Roles for Cardiac MyBP-C in Maintaining Myofilament Lattice Rigidity andÂProlonging Myosin Cross-Bridge Lifetime. Biophysical Journal, 2011, 101, 1661-1669.	0.5	39
129	Novel Role for p90 Ribosomal S6 Kinase in the Regulation of Cardiac Myofilament Phosphorylation. Journal of Biological Chemistry, 2011, 286, 5300-5310.	3.4	44
130	A Critical Function for Ser-282 in Cardiac Myosin Binding Protein-C Phosphorylation and Cardiac Function. Circulation Research, 2011, 109, 141-150.	4.5	113
131	Distinct Sarcomeric Substrates Are Responsible for Protein Kinase D-mediated Regulation of Cardiac Myofilament Ca2+ Sensitivity and Cross-bridge Cycling. Journal of Biological Chemistry, 2010, 285, 5674-5682.	3.4	96
132	Phosphorylation and function of cardiac myosin binding protein-C in health and disease. Journal of Molecular and Cellular Cardiology, 2010, 48, 866-875.	1.9	223
133	Analysis of cardiac myosin binding protein-C phosphorylation in human heart muscle. Journal of Molecular and Cellular Cardiology, 2010, 49, 1003-1011.	1.9	132
134	Targeted Genome-Wide Enrichment of Functional Regions. PLoS ONE, 2010, 5, e11138.	2.5	11
135	Cardiac Myosin Binding Protein-C Phosphorylation in a Î ² -Myosin Heavy Chain Background. Circulation, 2009, 119, 1253-1262.	1.6	81
136	Inducible Expression of Active Protein Phosphatase-1 Inhibitor-1 Enhances Basal Cardiac Function and Protects Against Ischemia/Reperfusion Injury. Circulation Research, 2009, 104, 1012-1020.	4.5	95
137	A common MYBPC3 (cardiac myosin binding protein C) variant associated with cardiomyopathies in South Asia. Nature Genetics, 2009, 41, 187-191.	21.4	245
138	The Death of Transcriptional Chauvinism in the Control and Regulation of Cardiac Contractility. Annals of the New York Academy of Sciences, 2008, 1123, 1-9.	3.8	8
139	Role of the acidic N′ region of cardiac troponin I in regulating myocardial function. FASEB Journal, 2008, 22, 1246-1257.	0.5	23
140	Distribution and Structure-Function Relationship of Myosin Heavy Chain Isoforms in the Adult Mouse Heart. Journal of Biological Chemistry, 2007, 282, 24057-24064.	3.4	34
141	Control of In Vivo Contraction/Relaxation Kinetics by Myosin Binding Protein C. Circulation, 2007, 116, 2399-2408.	1.6	73
142	Cardiac Transgenic and Gene Transfer Strategies Converge to Support an Important Role for Troponin I in Regulating Relaxation in Cardiac Myocytes. Circulation Research, 2007, 101, 377-386.	4.5	78
143	Novel mitochondrial DNA mutations implicated in Noonan syndrome. International Journal of Cardiology, 2007, 120, 284-285.	1.7	10
144	Cardiac isoform of alpha-2 macroglobulin—A new biomarker for myocardial infarcted diabetic patients. Atherosclerosis, 2006, 186, 173-176.	0.8	41

#	Article	IF	CITATIONS
145	PKC-βII sensitizes cardiac myofilaments to Ca2+ by phosphorylating troponin I on threonine-144. Journal of Molecular and Cellular Cardiology, 2006, 41, 823-833.	1.9	84
146	Cardiac myosin binding protein c phosphorylation is cardioprotective. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16918-16923.	7.1	189
147	Cardiac Myosin-Binding Protein-C Phosphorylation and Cardiac Function. Circulation Research, 2005, 97, 1156-1163.	4.5	203
148	Cardiac isoform of α-2 macroglobin, a novel serum protein, may induce cardiac hypertrophy in rats. Basic Research in Cardiology, 2001, 96, 23-33.	5.9	21
149	Heterogeneous Distribution of Genetic Mutations in Myosin Binding Protein-C Paralogs. Frontiers in Genetics, 0, 13, .	2.3	5