Catherine Branger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8141776/publications.pdf

Version: 2024-02-01

53 papers 1,403 citations

331259 21 h-index 344852 36 g-index

54 all docs

54 docs citations

54 times ranked 1603 citing authors

#	Article	IF	Citations
1	Influence of the synthesis parameters on the efficiency of fluorescent ion-imprinted polymers for lead detection. Reactive and Functional Polymers, 2022, 170, 105134.	2.0	7
2	Electrochemical sensors modified with ion-imprinted polymers for metal ion detection. TrAC - Trends in Analytical Chemistry, 2022, 148, 116536.	5.8	24
3	lon exchange of lanthanides with conventional and ion-imprinted resins containing sulfonic or iminodiacetic acid groups. Separation Science and Technology, 2021, 56, 203-216.	1.3	8
4	Impact of thermal treatment on bentonite retention ability toward nickel and silver retention. Separation Science and Technology, 2021, 56, 2521-2531.	1.3	6
5	Enhancing clay adsorption properties: A comparison between chemical and combined chemical/thermal treatments. Groundwater for Sustainable Development, 2021, 12, 100544.	2.3	8
6	Benefit of ion imprinting technique in solid-phase extraction of heavy metals, special focus on the last decade. Journal of Environmental Chemical Engineering, 2021, 9, 106548.	3.3	30
7	Electrochemical molecularly imprinted polymers in microelectrode devices. MRS Communications, 2020, 10, 324-331.	0.8	4
8	An insight of enhanced natural material (calcined diatomite) efficiency in nickel and silver retention: Application to natural effluents. Environmental Technology and Innovation, 2020, 18, 100768.	3.0	15
9	A turn-on fluorescent ion-imprinted polymer for selective and reliable optosensing of lead in real water samples. Sensors and Actuators B: Chemical, 2020, 319, 128252.	4.0	16
10	Fabrication and characterisation of novel nanofiltration polymeric membrane. Materials Today Communications, 2019, 20, 100580.	0.9	11
11	Identifying the Stoichiometry of Metal/Ligand Complex by Coupling Spectroscopy and Modelling: a Comprehensive Study on Two Fluorescent Molecules Specific to Lead. Journal of Fluorescence, 2019, 29, 933-943.	1.3	3
12	Modified 3D-printed device for mercury determination in waters. Analytica Chimica Acta, 2019, 1082, 78-85.	2.6	17
13	Evaluation of Molecularly Imprinted Thin Films for Ephedrine Recognition. Materiale Plastice, 2019, 56, 865-874.	0.4	5
14	Molecularly Imprinted Polymer Pearls Obtained by Phase Inversion for the Selective Recognition of Hypericin. Materiale Plastice, 2019, 56, 315-320.	0.4	2
15	Detection of Bisphenol A in aqueous medium by screen printed carbon electrodes incorporating electrochemical molecularly imprinted polymers. Biosensors and Bioelectronics, 2018, 112, 156-161.	5.3	74
16	3D-printed lab-on-valve for fluorescent determination of cadmium and lead in water. Talanta, 2018, 183, 201-208.	2.9	44
17	One-step preparation of molecularly imprinted hollow beads for pseudohypericin separation from Hypericum perforatum L. extracts. European Polymer Journal, 2018, 100, 48-56.	2.6	9
18	In situ complexation versus complex isolation in synthesis of ion imprinted polymers. Reactive and Functional Polymers, 2018, 122, 1-8.	2.0	6

#	Article	IF	CITATIONS
19	Electrochemical molecularly imprinted polymers as material for pollutant detection. Materials Today Communications, 2018, 17, 458-465.	0.9	21
20	Application of unusual on/off electrochemical properties of a molecularly imprinted polymer based on an EDOT–thiophene precursor for the detection of ephedrine. Electrochemistry Communications, 2018, 94, 45-48.	2.3	10
21	3D-printed flow system for determination of lead in natural waters. Talanta, 2017, 168, 298-302.	2.9	42
22	Effect of porogen solvent on the properties of nickel ion imprinted polymer materials prepared by inverse suspension polymerization. European Polymer Journal, 2017, 87, 124-135.	2.6	30
23	Numerical and Experimental Investigation of Surface Plasmon Resonance Excitation Using Whispering Gallery Modes in Bent Metal-Clad Single-Mode Optical Fiber. Journal of Lightwave Technology, 2017, 35, 5425-5431.	2.7	13
24	Nickel retention by an ion-imprinted polymer: Wide-range selectivity study and modelling of the binding structures. Chemical Engineering Journal, 2016, 304, 20-28.	6.6	11
25	An innovative approach to prepare hypericin molecularly imprinted pearls using a "phyto-template― Talanta, 2016, 148, 37-45.	2.9	10
26	Assessment and modelling of Ni(II) retention by an ion-imprinted polymer: Application in natural samples. Journal of Colloid and Interface Science, 2015, 448, 473-481.	5.0	22
27	Effect of template ion–ligand complex stoichiometry on selectivity of ion-imprinted polymers. Talanta, 2015, 134, 538-545.	2.9	21
28	A versatile electrochemical sensing receptor based on a molecularly imprinted polymer. Chemical Communications, 2014, 50, 7488.	2.2	47
29	Complexation of Nickel with 2-(Aminomethyl)pyridine at High Zinc Concentrations or in a Nonaqueous Solvent Mixture. Journal of Chemical & Engineering Data, 2014, 59, 2207-2214.	1.0	8
30	A new microemulsion approach for producing molecularly imprinted polymers with selective recognition cavities for gallic acid. Polymer International, 2013, 62, 949-956.	1.6	12
31	Recent advances on ion-imprinted polymers. Reactive and Functional Polymers, 2013, 73, 859-875.	2.0	275
32	Tailor-made polymer beads for gallic acid recognition and separation. Journal of Polymer Research, 2012, 19, 1.	1.2	11
33	Inverse Suspension Polymerization as a New Tool for the Synthesis of Ionâ€Imprinted Polymers. Macromolecular Rapid Communications, 2012, 33, 928-932.	2.0	32
34	Catechol immobilized on crosslinked polystyrene resins by grafting or copolymerization: Incidence on metal ions adsorption. Reactive and Functional Polymers, 2012, 72, 98-106.	2.0	20
35	Synthesis of a poly(vinylcatechol-co-divinylbenzene) resin and accessibility to catechol units. Polymer, 2010, 51, 2472-2478.	1.8	25
36	Synthesis and applications of XAD-4-DAN chelate resin for the separation and determination of Se(IV). Reactive and Functional Polymers, 2009, 69, 877-883.	2.0	22

#	Article	IF	Citations
37	Salicylic acid and derivatives anchored on poly(styrene-co-divinylbenzene) resin and membrane via a diazo bridge: Synthesis, characterisation and application to metal extraction. Reactive and Functional Polymers, 2008, 68, 775-786.	2.0	31
38	Synthesis and characterization of a polystyrenic resin functionalized by catechol: Application to retention of metal ions. Reactive and Functional Polymers, 2008, 68, 1362-1370.	2.0	34
39	Modification of poly(styrene-co-divinylbenzene) membrane by grafting of salicylic acid via a ketone bridge. European Polymer Journal, 2007, 43, 416-424.	2.6	9
40	On-line solid-phase extraction and multisyringe flow injection analysis of Al(III) and Fe(III) in drinking water. Analytical and Bioanalytical Chemistry, 2007, 389, 1595-1602.	1.9	28
41	Comparative Study on Metal Extraction Properties of Empore SDBâ€XC and Amberlite XADâ€4 Grafted by Salicylic Acid and its Derivatives via Different Bridges. Separation Science and Technology, 2006, 41, 1619-1633.	1.3	9
42	Associative properties of perfluorooctyl end-functionalized polystyrene-poly(ethylene oxide) diblock copolymers. Polymer International, 2005, 54, 90-95.	1.6	7
43	Fluorimetric determination of aluminium in water by sequential injection through column extraction. Analytical and Bioanalytical Chemistry, 2004, 378, 1652-1658.	1.9	24
44	Synthesis and characterization of PS-block-PEO associative water-soluble polymers. European Polymer Journal, 2003, 39, 333-339.	2.6	11
45	Modification of poly(styrene-co-divinylbenzene) resin by grafting on an aluminium selective ligand. Polymer International, 2002, 51, 1050-1057.	1.6	22
46	Synthesis, characterisation and aqueous behaviour of a one-ended perfluorocarbon-modified poly(ethylene glycol). Polymer, 2002, 43, 5329-5334.	1.8	21
47	Symmetry of the all-optical orientation dynamics of an octupolar azo-dye salt. Synthetic Metals, 2000, 115, 127-131.	2.1	9
48	lon-responsive fluorescent compounds V. Photophysical and complexing properties of coumarin 343 linked to monoaza-15-crown-5. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 116, 127-133.	2.0	44
49	Polyurethanes containing boron chromophores as sidechains for nonlinear optics. Chemical Physics Letters, 1997, 272, 265-270.	1.2	57
50	Boron derivatives containing a bithiophene bridge as new materials for non-linear optics. Journal of Materials Chemistry, 1996, 6, 555.	6.7	105
51	Hyperpolarizability of tetraorganotin compounds determined by the hyper-Rayleigh scattering technique. Chemical Physics Letters, 1994, 229, 101-104.	1.2	31
52	First hyperpolarizability of organotin compounds withTd symmetry. Advanced Materials, 1994, 6, 851-853.	11.1	40
53	Role of Ligand Acidity in Chelating Adsorption and Desorption of Metal Salts. Industrial & Samp; Engineering Chemistry Research, 0, , 120917110733001.	1.8	0