
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/814177/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical Improvement of Biochar-Alginate Composite by Using Melamine Sponge as Support and Application to Cu(II) Removal. Journal of Polymers and the Environment, 2022, 30, 2037-2049.	5.0	4
2	Improved Productivity of Naringin Oleate with Flavonoid and Fatty Acid by Efficient Enzymatic Esterification. Antioxidants, 2022, 11, 242.	5.1	13
3	Enhanced Production of Bacterial Cellulose from Miscanthus as Sustainable Feedstock through Statistical Optimization of Culture Conditions. International Journal of Environmental Research and Public Health, 2022, 19, 866.	2.6	21
4	Energy-efficient glucose recovery from chestnut shell by optimization of NaOH pretreatment at room temperature and application to bioethanol production. Environmental Research, 2022, 208, 112710.	7.5	14
5	Efficient Production of Naringin Acetate with Different Acyl Donors via Enzymatic Transesterification by Lipases. International Journal of Environmental Research and Public Health, 2022, 19, 2972.	2.6	6
6	Improved Productivity of Astaxanthin from Photosensitive Haematococcus pluvialis Using Phototaxis Technology. Marine Drugs, 2022, 20, 220.	4.6	4
7	Development of GO/Co/Chitosan-Based Nano-Biosensor for Real-Time Detection of D-Glucose. Biosensors, 2022, 12, 464.	4.7	10
8	Improved Glucose Recovery from Sicyos angulatus by NaOH Pretreatment and Application to Bioethanol Production. Processes, 2021, 9, 245.	2.8	12
9	Optimization of Lutein Recovery from Tetraselmis suecica by Response Surface Methodology. Biomolecules, 2021, 11, 182.	4.0	19
10	Improved production of bacterial cellulose through investigation of effects of inhibitory compounds from lignocellulosic hydrolysates. GCB Bioenergy, 2021, 13, 436-444.	5.6	16
11	The next-generation biomass for biorefining. BioResources, 2021, 16, 2188-2191.	1.0	14
12	Improved Sugar Recovery from Orange Peel by Statistical Optimization of Thermo-Alkaline Pretreatment. Processes, 2021, 9, 409.	2.8	11
13	Statistical Optimization of Alkali Pretreatment to Improve Sugars Recovery from Spent Coffee Grounds and Utilization in Lactic Acid Fermentation. Processes, 2021, 9, 494.	2.8	23
14	Development of 2,3-Butanediol Production Process from Klebsiella aerogenes ATCC 29007 Using Extracted Sugars of Chlorella pyrenoidosa and Biodiesel-Derived Crude Glycerol. Processes, 2021, 9, 517.	2.8	6
15	Improvement of Enzymatic Glucose Conversion from Chestnut Shells through Optimization of KOH Pretreatment. International Journal of Environmental Research and Public Health, 2021, 18, 3772.	2.6	11
16	Low Temperature and Cold Stress Significantly Increase Saxitoxins (STXs) and Expression of STX Biosynthesis Genes sxtA4 and sxtG in the Dinoflagellate Alexandrium catenella. Marine Drugs, 2021, 19, 291.	4.6	21
17	Recent advancements in biochar production according to feedstock classification, pyrolysis conditions, and applications: A review. BioResources, 2021, 16, 6512-6547.	1.0	16
18	High potential of microalgal sludge biochar for a flexible all-solid-state microsupercapacitor. Journal of Energy Storage, 2021, 44, 103458.	8.1	7

#	Article	IF	CITATIONS
19	Rapid and concise quantification of mycelial growth by microscopic image intensity model and application to mass cultivation of fungi. Scientific Reports, 2021, 11, 24157.	3.3	3
20	Improvement of power generation of enzyme fuel cell by novel GO/Co/chitosan electrodeposition. Journal of Industrial and Engineering Chemistry, 2020, 81, 108-114.	5.8	12
21	Significant impact of casein hydrolysate to overcome the low consumption of glycerol by Klebsiella aerogenes ATCC 29007 and its application to bioethanol production. Energy Conversion and Management, 2020, 221, 113181.	9.2	19
22	Fabrication of Functional Bioelastomer for Food Packaging from Aronia (Aronia melanocarpa) Juice Processing By-Products. Foods, 2020, 9, 1565.	4.3	25
23	Enhanced In-Vitro Hemozoin Polymerization by Optimized Process using Histidine-Rich Protein II (HRPII). Polymers, 2019, 11, 1162.	4.5	11
24	Enhanced l-Lysine into 1,5-Diaminopentane Conversion via Statistical Optimization of Whole-Cell Decarboxylation System. Polymers, 2019, 11, 1372.	4.5	15
25	Improved Cordycepin Production by Cordyceps militaris KYL05 Using Casein Hydrolysate in Submerged Conditions. Biomolecules, 2019, 9, 461.	4.0	25
26	Biodiesel production by lipases co-immobilized on the functionalized activated carbon. Bioresource Technology Reports, 2019, 7, 100248.	2.7	40
27	Camellia japonica oil suppressed asthma occurrence via GATA-3 & IL-4 pathway and its effective and major component is oleic acid. Phytomedicine, 2019, 57, 84-94.	5.3	36
28	Continuous production of bioethanol using microalgal sugars extracted from Nannochloropsis gaditana. Korean Journal of Chemical Engineering, 2019, 36, 71-76.	2.7	9
29	The potential of waste microalgal hydrolysate for power generation in enzymatic fuel cell. Journal of Cleaner Production, 2018, 187, 903-909.	9.3	7
30	Production of xylanase from a novel engineered Pichia pastoris and application to enzymatic hydrolysis process for biorefinery. Process Biochemistry, 2018, 65, 130-135.	3.7	14
31	Improvement of sugar recovery from Sida acuta (Thailand Weed) by NaOH pretreatment and application to bioethanol production. Korean Journal of Chemical Engineering, 2018, 35, 2413-2420.	2.7	28
32	Enhanced electron transfer mediator based on biochar from microalgal sludge for application to bioelectrochemical systems. Bioresource Technology, 2018, 264, 387-390.	9.6	20
33	Improved reutilization of industrial crude lysine to 1,5-diaminopentane by enzymatic decarboxylation using various detergents and organic solvents. Korean Journal of Chemical Engineering, 2018, 35, 1854-1859.	2.7	9
34	Re-utilization of waste glycerol for continuous production of bioethanol by immobilized Enterobacter aerogenes. Journal of Cleaner Production, 2017, 161, 757-764.	9.3	19
35	Enhancement of glucose yield from canola agricultural residue by alkali pretreatment based on multi-regression models. Journal of Industrial and Engineering Chemistry, 2017, 51, 303-311.	5.8	33
36	Utilization of algal sugars and glycerol for enhanced cephalosporin C production by Acremonium chrysogenum M35. Letters in Applied Microbiology, 2017, 64, 66-72.	2.2	8

#	Article	IF	CITATIONS
37	Evaluation of the overall process on bioethanol production from miscanthus hydrolysates obtained by dilute acid pretreatment. Biotechnology and Bioprocess Engineering, 2016, 21, 733-742.	2.6	25
38	Improved fermentation of lignocellulosic hydrolysates to 2,3-butanediol through investigation of effects of inhibitory compounds by Enterobacter aerogenes. Chemical Engineering Journal, 2016, 306, 916-924.	12.7	24
39	Enhancement of hydrolysis of Chlorella vulgaris by hydrochloric acid. Bioprocess and Biosystems Engineering, 2016, 39, 1015-1021.	3.4	30
40	A novel low-molecular weight alkaline mannanase from Streptomyces tendae. Biotechnology and Bioprocess Engineering, 2015, 20, 453-461.	2.6	11
41	Understanding βâ€mannanase from <i>Streptomyces</i> sp. CS147 and its potential application in lignocellulose based biorefining. Biotechnology Journal, 2015, 10, 1894-1902.	3.5	18
42	Phenolic compounds: Strong inhibitors derived from lignocellulosic hydrolysate for 2,3â€butanediol production by <i>Enterobacter aerogenes</i> . Biotechnology Journal, 2015, 10, 1920-1928.	3.5	29
43	Enhancement of enzymatic digestibility of Miscanthus by electron beam irradiation and chemical combined treatments for bioethanol production. Chemical Engineering Journal, 2015, 275, 227-234.	12.7	31
44	An Extracellular Chitinase from Streptomyces sp. CS147 Releases N-acetyl-d-glucosamine (GlcNAc) as Principal Product. Applied Biochemistry and Biotechnology, 2015, 175, 372-386.	2.9	11
45	Development of Electron Transfer Mediator Using Modified Graphite Oxide/Cobalt for Enzymatic Fuel Cell. Journal of the Electrochemical Society, 2015, 162, G113-G118.	2.9	10
46	Optimization of medium composition for enhanced cellulase production by mutant Penicillium brasilianum KUEB15 using statistical method. Journal of Industrial and Engineering Chemistry, 2015, 25, 145-150.	5.8	37
47	Immobilization of acetyl xylan esterase on modified graphite oxide and utilization to peracetic acid production. Biotechnology and Bioprocess Engineering, 2014, 19, 1042-1047.	2.6	8
48	Biorefinery of instant noodle waste to biofuels. Bioresource Technology, 2014, 159, 17-23.	9.6	49
49	Transesterification of Waste Cooking Oil by an Organic Solvent-Tolerant Alkaline Lipase from Streptomyces sp. CS273. Applied Biochemistry and Biotechnology, 2014, 172, 1377-1389.	2.9	18
50	Co-fermentation of carbon sources by Enterobacter aerogenes ATCC 29007 to enhance the production of bioethanol. Bioprocess and Biosystems Engineering, 2014, 37, 1073-1084.	3.4	19
51	The hydrolysate of barley straw containing inhibitors can be used to produce cephalosporin C by solvent extraction using ethyl acetate. Process Biochemistry, 2014, 49, 2203-2206.	3.7	9
52	Statistical optimization of critical parameters for alkaline treatments of canola agricultural residue by advanced regression model. New Biotechnology, 2014, 31, S96-S97.	4.4	0
53	Production of bioethanol and biodiesel using instant noodle waste. Bioprocess and Biosystems Engineering, 2014, 37, 1627-1635.	3.4	39
54	Research Trend of Lactulose Production from Lactose. Korean Chemical Engineering Research, 2014, 52, 407-412.	0.2	0

#	ARTICLE	IF	CITATIONS
55	An ammonium sulfate sensitive endoxylanase produced by Streptomyces. Bioprocess and Biosystems Engineering, 2013, 36, 819-825.	3.4	4
56	Lipase from Penicillium camembertii KCCM 11268: Optimization of solid state fermentation and application to biodiesel production. Korean Journal of Chemical Engineering, 2013, 30, 405-412.	2.7	25
57	Biodiesel production by enzymatic process using Jatropha oil and waste soybean oil. Biotechnology and Bioprocess Engineering, 2013, 18, 703-708.	2.6	25
58	Enzymatic fuel cells based on electrodeposited graphite oxide/cobalt hydroxide/chitosan composite–enzymeelectrode. Biosensors and Bioelectronics, 2013, 42, 342-348.	10.1	53
59	Development of glycerol-utilizing Escherichia coli strain for the production of bioethanol. Enzyme and Microbial Technology, 2013, 53, 206-215.	3.2	11
60	Co-immobilization of Candida rugosa and Rhyzopus oryzae lipases and biodiesel production. Korean Journal of Chemical Engineering, 2013, 30, 1335-1338.	2.7	42
61	Reutilization of carbon sources through sugar recovery from waste rice straw. Renewable Energy, 2013, 53, 43-48.	8.9	2
62	Kinetic modeling of biodiesel production by mixed immobilized and co-immobilized lipase systems under two pressure conditions. Korean Journal of Chemical Engineering, 2013, 30, 1272-1276.	2.7	24
63	An Extremely Alkaline Novel Xylanase from a Newly Isolated Streptomyces Strain Cultivated in Corncob Medium. Applied Biochemistry and Biotechnology, 2012, 168, 2017-2027.	2.9	20
64	Production of cellulases and β-glucosidase in Trichoderma reesei mutated by proton beam irradiation. Korean Journal of Chemical Engineering, 2012, 29, 925-930.	2.7	8
65	Efficient immobilization technique for enhancement of cellobiose dehydrogenase activity on silica gel. Biotechnology and Bioprocess Engineering, 2012, 17, 55-59.	2.6	4
66	A novel cold-adapted lipase, LP28, from a mesophilic Streptomyces strain. Bioprocess and Biosystems Engineering, 2012, 35, 217-225.	3.4	7
67	A novel alkaline lipase from Ralstonia with potential application in biodiesel production. Bioresource Technology, 2011, 102, 6104-6111.	9.6	68