Wangqing Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8141297/publications.pdf

Version: 2024-02-01

93792 175968 4,175 125 39 55 citations h-index g-index papers 129 129 129 3706 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis of <scp>Stimuliâ€Responsive</scp> Block Copolymers and Block Copolymer Nanoâ€assemblies. Chinese Journal of Chemistry, 2022, 40, 965-972.	2.6	13
2	Singleâ€Step Expeditious Synthesis of Diblock Copolymers with Different Morphologies by Lewis Pair Polymerizationâ€Induced Selfâ€Assembly. Angewandte Chemie - International Edition, 2022, 61, .	7.2	24
3	Singleâ€Step Expeditious Synthesis of Diblock Copolymers with Different Morphologies by Lewis Pair Polymerizationâ€Induced Selfâ€Assembly. Angewandte Chemie, 2022, 134, .	1.6	5
4	Synthesis of Cross‣inked Block Copolymer Nanoassemblies and their Coating Application. Macromolecular Rapid Communications, 2022, 43, e2100909.	2.0	1
5	UV-Cured Semi-Interpenetrating polymer networks of solid electrolytes for rechargeable lithium metal batteries. Chemical Engineering Journal, 2022, 437, 135329.	6.6	14
6	Hybrid Nanoscale Vesicles of Polyhedral Oligomeric Silsesquioxane-Based Star Block Copolymers for Thermal Insulation Applications. ACS Applied Nano Materials, 2022, 5, 7042-7050.	2.4	9
7	The synthesis of thermoresponsive POSS-based eight-arm star poly(<i>N</i> -isopropylacrylamide): A comparison between Z-RAFT and R-RAFT strategies. Polymer Chemistry, 2021, 12, 2063-2074.	1.9	7
8	Synthesis and self-assembly of star multiple block copolymer of poly(4-vinylpyridine)-block-polystyrene. Polymer, 2021, 215, 123431.	1.8	4
9	Tough thermosensitive hydrogel with excellent adhesion to low-energy surface developed via nanoparticle-induced dynamic crosslinking. Applied Surface Science, 2021, 560, 149935.	3.1	13
10	Thermoresponsive Polymers Based on Tertiary Amine Moieties. Macromolecular Rapid Communications, 2021, 42, e2100504.	2.0	16
11	Synthesis of ABA triblock copolymer nanoparticles by polymerization induced self-assembly and their application as an efficient emulsifier. Polymer Chemistry, 2021, 12, 572-580.	1.9	9
12	Catalytic degradation of TCE by a PVDF membrane with Pd-coated nanoscale zero-valent iron reductant. Science of the Total Environment, 2020, 702, 135030.	3.9	15
13	UV-Cured Interpenetrating Networks of Single-ion Conducting Polymer Electrolytes for Rechargeable Lithium Metal Batteries. ACS Applied Energy Materials, 2020, 3, 12532-12539.	2.5	20
14	Thermoresponsive Polymers of Poly(2-(N-alkylacrylamide)ethyl acetate)s. Polymers, 2020, 12, 2464.	2.0	6
15	Physically mixed catalytic system of amino and sulfo-functional porous organic polymers as efficiently synergistic co-catalysts for one-pot cascade reactions. New Journal of Chemistry, 2020, 44, 9546-9556.	1.4	4
16	Selective adsorption of PHC and regeneration of washing effluents by modified diatomite. Water Science and Technology, 2020, 81, 2066-2077.	1.2	3
17	Cross-linking approaches for block copolymer nano-assemblies <i>via</i> RAFT-mediated polymerization-induced self-assembly. Polymer Chemistry, 2020, 11, 4681-4692.	1.9	62
18	Star amphiphilic block copolymers: synthesis <i>via</i> polymerization-induced self-assembly and crosslinking within nanoparticles, and solution and interfacial properties. Polymer Chemistry, 2020, 11, 2532-2541.	1.9	21

#	Article	IF	CITATIONS
19	Photoregulated reversible addition–fragmentation chain transfer (RAFT) polymerization. Polymer Chemistry, 2020, 11, 1830-1844.	1.9	52
20	A new visible light and temperature responsive diblock copolymer. Polymer Chemistry, 2019, 10, 5001-5009.	1.9	14
21	Switchable Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization with the Assistance of Azobenzenes. Angewandte Chemie, 2019, 131, 11571-11575.	1.6	6
22	RAFT Dispersion Polymerization in the Presence of Block Copolymer Nanoparticles and Synthesis of Multicomponent Block Copolymer Nanoassemblies. Macromolecules, 2019, 52, 5168-5176.	2.2	17
23	Regeneration of Washing Effluents for Remediation of Petroleum-Hydrocarbons-Contaminated Soil by Corncob-Based Biomass Materials. ACS Omega, 2019, 4, 18711-18717.	1.6	2
24	Star Brush Block Copolymer Electrolytes with High Ambient-Temperature Ionic Conductivity for Quasi-Solid-State Lithium Batteries., 2019, 1, 606-612.		32
25	Synthesis of star thermoresponsive amphiphilic block copolymer nano-assemblies and the effect of topology on their thermoresponse. Polymer Chemistry, 2019, 10, 403-411.	1.9	39
26	Synthesis of block copolymer nano-assemblies via ICAR ATRP and RAFT dispersion polymerization: how ATRP and RAFT lead to differences. Polymer Chemistry, 2019, 10, 1150-1157.	1.9	26
27	Switchable Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization with the Assistance of Azobenzenes. Angewandte Chemie - International Edition, 2019, 58, 11449-11453.	7.2	35
28	Synthesis of Multicompartment Nanoparticles of ABC Miktoarm Star Polymers by Seeded RAFT Dispersion Polymerization. ACS Macro Letters, 2019, 8, 783-788.	2.3	52
29	Multicompartment block copolymer nanoparticles: recent advances and future perspectives. Polymer Chemistry, 2019, 10, 3426-3435.	1.9	58
30	What will happen when thermoresponsive poly(<i>N</i> -isopropylacrylamide) is tethered on poly(ionic liquid)s?. RSC Advances, 2019, 9, 12936-12943.	1.7	6
31	Synthesis of Single Lithium-lon Conducting Polymer Electrolyte Membrane for Solid-State Lithium Metal Batteries. ACS Applied Energy Materials, 2019, 2, 3028-3034.	2.5	81
32	A new thermoresponsive polymer of poly(N-acetoxylethyl acrylamide). Polymer, 2019, 167, 159-166.	1.8	12
33	Mesoporous polymeric catalysts with both sulfonic acid and basic amine groups for the one-pot deacetalizationâ 'Knoevenagel reaction. New Journal of Chemistry, 2019, 43, 16676-16684.	1.4	12
34	Star Block Copolymer Nanoassemblies: Block Sequence is All-Important. Macromolecules, 2019, 52, 718-728.	2,2	39
35	Self-assembly synthesis of solid polymer electrolyte with carbonate terminated poly(ethylene glycol) matrix and its application for solid state lithium battery. Journal of Energy Chemistry, 2019, 38, 55-59.	7.1	26
36	ICAR ATRP in PEG with Low Concentration of Cu(II) Catalyst: A Versatile Method for Synthesis of Block Copolymer Nanoassemblies under Dispersion Polymerization. Macromolecular Rapid Communications, 2019, 40, e1800140.	2.0	19

#	Article	IF	CITATIONS
37	Synthesis of multi-arm star thermo-responsive polymers and topology effects on phase transition. Polymer Chemistry, 2018, 9, 2625-2633.	1.9	29
38	Thermoresponsive hydrogels with high elasticity and rapid response synthesized by RAFT polymerization via special crosslinking. Polymer, 2018, 159, 1-5.	1.8	6
39	Concise Synthesis of Photoresponsive Polyureas Containing Bridged Azobenzenes as Visible-Light-Driven Actuators and Reversible Photopatterning. Macromolecules, 2018, 51, 4290-4297.	2.2	52
40	Influence of Solvophilic Homopolymers on RAFT Polymerization-Induced Self-Assembly. Macromolecules, 2018, 51, 4397-4406.	2.2	48
41	Topology Affecting Block Copolymer Nanoassemblies: Linear Block Copolymers versus Star Block Copolymers under PISA Conditions. Macromolecules, 2018, 51, 5440-5449.	2.2	55
42	Synthesis of diblock copolymer nano-assemblies: Comparison between PISA and micellization. Polymer, 2018, 150, 204-213.	1.8	10
43	An efficient route to synthesize thermoresponsive molecular bottlebrushes of poly[o-aminobenzyl alcohol-graft-poly(N-isopropylacrylamide)]. Polymer Chemistry, 2017, 8, 1932-1942.	1.9	13
44	In situ synthesis of the Ag/poly(4-vinylpyridine)-block-polystyrene composite nanoparticles by dispersion RAFT polymerization. Polymer Chemistry, 2017, 8, 3203-3210.	1.9	20
45	A new thermoresponsive polymer of poly(N-acryloylsarcosine methyl ester) with a tunable LCST. Polymer Chemistry, 2017, 8, 3090-3101.	1.9	46
46	In situ synthesis of thermoresponsive 4-arm star block copolymer nano-assemblies by dispersion RAFT polymerization. Polymer Chemistry, 2017, 8, 3485-3496.	1.9	22
47	A New Family of Thermo-, pH-, and CO ₂ -Responsive Homopolymers of Poly[Oligo(ethylene) Tj ETQq1	1.0.7843	14 rgBT /O\
48	Synthesis of Multicompartment Nanoparticles of ABC Triblock Copolymers through Intramolecular Interactions of Two Solvophilic Blocks. Macromolecules, 2017, 50, 2794-2802.	2.2	19
49	In situ synthesis of a self-assembled AB/B blend of poly(ethylene glycol)-b-polystyrene/polystyrene by dispersion RAFT polymerization. Polymer Chemistry, 2017, 8, 2173-2181.	1.9	21
50	Synthesis of diblock copolymer nano-assemblies by PISA under dispersion polymerization: comparison between ATRP and RAFT. Polymer Chemistry, 2017, 8, 6407-6415.	1.9	44
51	In Situ Synthesis of Coil–Coil Diblock Copolymer Nanotubes and Tubular Ag/Polymer Nanocomposites by RAFT Dispersion Polymerization in Poly(ethylene glycol). Macromolecules, 2017, 50, 7593-7602.	2.2	44
52	Versatile multicompartment nanoparticles constructed with two thermo-responsive, pH-responsive and hydrolytic diblock copolymers. Polymer Chemistry, 2017, 8, 5593-5602.	1.9	10
53	RAFT synthesis and micellization of a photo-, temperature- and pH-responsive diblock copolymer based on spiropyran. Polymer Chemistry, 2017, 8, 7325-7332.	1.9	20
54	<i>In situ</i> synthesis of nanoâ€assemblies of the high molecular weight ferroceneâ€containing block copolymer <i>via</i> dispersion <scp>RAFT</scp> polymerization. Journal of Polymer Science Part A, 2016, 54, 900-909.	2.5	22

#	Article	IF	Citations
55	Polymerizationâ€induced selfâ€assembly of block copolymer through dispersion RAFT polymerization in ionic liquid. Journal of Polymer Science Part A, 2016, 54, 1517-1525.	2.5	32
56	<i>In Situ</i> Synthesis of Thermoresponsive Polystyrene- <i>b</i> -poly(<i>N</i> -isopropylacrylamide)- <i>b</i> -polystyrene Nanospheres and Comparative Study of the Looped and Linear Poly(<i>N</i> -isopropylacrylamide)s. Macromolecules, 2016, 49, 2772-2781.	2.2	50
57	N-Ester-substituted polyacrylamides with a tunable lower critical solution temperature (LCST): the N-ester-substitute dependent thermoresponse. Polymer Chemistry, 2016, 7, 3509-3519.	1.9	19
58	<i>In Situ</i> Synthesis of Block Copolymer Nanoassemblies via Polymerization-Induced Self-Assembly in Poly(ethylene glycol). Macromolecules, 2016, 49, 3789-3798.	2.2	85
59	RAFT synthesis of triply responsive poly[N-[2-(dialkylamino)ethyl]acrylamide]s and their N-substitute determined response. Polymer Chemistry, 2016, 7, 3423-3433.	1.9	31
60	Dual-responsive supramolecular colloidal microcapsules from cucurbit[8]uril molecular recognition in microfluidic droplets. Polymer Chemistry, 2016, 7, 5996-6002.	1.9	22
61	How the Polymerization Procedures Affect the Morphology of the Block Copolymer Nanoassemblies: Comparison between Dispersion RAFT Polymerization and Seeded RAFT Polymerization. Macromolecules, 2016, 49, 8167-8176.	2.2	41
62	Synthesis and micellization of a multi-stimuli responsive block copolymer based on spiropyran. Polymer Chemistry, 2016, 7, 6880-6884.	1.9	39
63	Self-Assembled Blends of AB/BAB Block Copolymers Prepared through Dispersion RAFT Polymerization. Macromolecules, 2016, 49, 4490-4500.	2.2	69
64	Synthesis of Polystyreneâ€ <i>block</i> â€Poly(4â€vinylpyridine) Ellipsoids through Macroâ€RAFTâ€Agentâ€Mediated Dispersion Polymerization: The Solvent Effect on the Morphology of the In Situ Synthesized Block Copolymer Nanoobjects. Macromolecular Chemistry and Physics, 2016, 217, 467-476.	1.1	12
65	Thermoresponsive poly(ionic liquid): Controllable RAFT synthesis, thermoresponse, and application in dispersion RAFT polymerization. Journal of Polymer Science Part A, 2016, 54, 945-954.	2.5	27
66	One-pot preparation of BAB triblock copolymer nano-objects through bifunctional macromolecular RAFT agent mediated dispersion polymerization. Polymer Chemistry, 2016, 7, 1953-1962.	1.9	29
67	Redox-Responsive Multicompartment Vesicles of Ferrocene-Containing Triblock Terpolymer Exhibiting On–Off Switchable Pores. ACS Macro Letters, 2016, 5, 88-93.	2.3	99
68	A New Thermo-, pH-, and CO ₂ -Responsive Homopolymer of Poly[<i>N</i> -[2-(diethylamino)ethyl]acrylamide]: Is the Diethylamino Group Underestimated?. Macromolecules, 2016, 49, 162-171.	2.2	107
69	<i>In situ</i> synthesis of ABA triblock copolymer nanoparticles by seeded RAFT polymerization: Effect of the chain length of the third a block on the triblock copolymer morphology. Journal of Polymer Science Part A, 2015, 53, 1777-1784.	2.5	14
70	Macro-RAFT agent mediated dispersion copolymerization: a small amount of solvophilic co-monomer leads to a great change. Polymer Chemistry, 2015, 6, 4911-4920.	1.9	45
71	Multicompartment Nanoparticles of Poly(4-vinylpyridine) Graft Block Terpolymer: Synthesis and Application as Scaffold for Efficient Au Nanocatalyst. Macromolecules, 2015, 48, 1380-1389.	2.2	48
72	Synthesis of multicompartment nanoparticles of a triblock terpolymer by seeded RAFT polymerization. Polymer Chemistry, 2015, 6, 6386-6393.	1.9	27

#	Article	IF	Citations
73	Modification of block copolymer vesicles: what will happen when AB diblock copolymer is block-extended to an ABC triblock terpolymer?. Polymer Chemistry, 2015, 6, 3407-3414.	1.9	16
74	Macro-RAFT agent mediated dispersion polymerization: the monomer concentration effect on the morphology of the in situ synthesized block copolymer nano-objects. Polymer Chemistry, 2015, 6, 8003-8011.	1.9	39
75	Asymmetrical vesicles: convenient <i>in situ</i> RAFT synthesis and controllable structure determination. Polymer Chemistry, 2015, 6, 6563-6572.	1.9	17
76	Doubly thermo-responsive nanoparticles constructed with two diblock copolymers prepared through the two macro-RAFT agents co-mediated dispersion RAFT polymerization. Polymer Chemistry, 2015, 6, 70-78.	1.9	35
77	Disassembly of Block Copolymer Vesicles into Nanospheres through Vesicle Mediated RAFT Polymerization. Macromolecules, 2014, 47, 8262-8269.	2.2	40
78	Thermoresponsive diblock copolymer micellar macro-RAFT agent-mediated dispersion RAFT polymerization and synthesis of temperature-sensitive ABC triblock copolymer nanoparticles. Journal of Polymer Science Part A, 2014, 52, 2155-2165.	2.5	47
79	Precise evaluation of the block copolymer nanoparticle growth in polymerization-induced self-assembly under dispersion conditions. Polymer Chemistry, 2014, 5, 578-587.	1.9	58
80	Temperature-Sensitive Nanoparticle-to-Vesicle Transition of ABC Triblock Copolymer Corona–Shell–Core Nanoparticles Synthesized by Seeded Dispersion RAFT Polymerization. Macromolecules, 2014, 47, 1360-1370.	2.2	49
81	Thermo-responsive ABA triblock copolymer of PVEA-b-PNIPAM-b-PVEA showing solvent-tunable LCST in a methanol–water mixture. Polymer Chemistry, 2014, 5, 1219-1228.	1.9	36
82	Doubly thermoresponsive brush-linear-linear ABC triblock copolymer nanoparticles prepared through dispersion RAFT polymerization. Journal of Polymer Science Part A, 2014, 52, 2266-2278.	2.5	25
83	A new strategy to prepare thermo-responsive multicompartment nanoparticles constructed with two diblock copolymers. Polymer Chemistry, 2014, 5, 7090-7099.	1.9	20
84	Nanoparticle-to-vesicle and nanoparticle-to-toroid transitions of pH-sensitive ABC triblock copolymers by in-to-out switch. Chemical Communications, 2014, 50, 3969-3972.	2.2	30
85	Synthesis of a doubly thermo-responsive schizophrenic diblock copolymer based on poly[N-(4-vinylbenzyl)-N,N-diethylamine] and its temperature-sensitive flip-flop micellization. Polymer Chemistry, 2014, 5, 3910-3918.	1.9	15
86	A New Strategy To Synthesize Temperature- and pH-Sensitive Multicompartment Block Copolymer Nanoparticles by Two Macro-RAFT Agents Comediated Dispersion Polymerization. Macromolecules, 2014, 47, 7442-7452.	2.2	47
87	Doubly thermo-responsive ABC triblock copolymer nanoparticles prepared through dispersion RAFT polymerization. Polymer Chemistry, 2014, 5, 2961-2972.	1.9	75
88	Dispersion RAFT polymerization: comparison between the monofunctional and bifunctional macromolecular RAFT agents. Polymer Chemistry, 2014, 5, 6957-6966.	1.9	86
89	In-Situ Synthesis of Multicompartment Nanoparticles of Linear BAC Triblock Terpolymer by Seeded RAFT Polymerization. Macromolecules, 2014, 47, 2340-2349.	2.2	52
90	Seeded dispersion RAFT polymerization and synthesis of well-defined ABA triblock copolymer flower-like nanoparticles. Polymer Chemistry, 2014, 5, 2736-2746.	1.9	43

#	Article	IF	CITATIONS
91	In situ synthesis of thermo-responsive ABC triblock terpolymer nano-objects by seeded RAFT polymerization. Polymer Chemistry, 2014, 5, 5569-5577.	1.9	23
92	Synthesis of Multicompartment Nanoparticles of Block Copolymer through Two Macro-RAFT Agents Co-Mediated Dispersion Polymerization. ACS Macro Letters, 2014, 3, 916-921.	2.3	51
93	A new thermo-responsive block copolymer with tunable upper critical solution temperature and lower critical solution temperature in the alcohol/water mixture. Journal of Polymer Science Part A, 2013, 51, 4399-4412.	2.5	24
94	Dispersion RAFT polymerization of 4â€vinylpyridine in toluene mediated with the macroâ€RAFT agent of polystyrene dithiobenzoate: Effect of the macroâ€RAFT agent chain length and growth of the block copolymer nanoâ€objects. Journal of Polymer Science Part A, 2013, 51, 1573-1584.	2.5	54
95	RAFTâ€mediated emulsion polymerization of styrene using brush copolymer as surfactant macroâ€RAFT agent: Effect of the brush copolymer sequence and chemical composition. Journal of Polymer Science Part A, 2013, 51, 1147-1161.	2.5	30
96	Controlled synthesis of graft polymer through the coupling reaction between the appending \hat{l}^2 -keto ester and the terminal amine. Polymer, 2013, 54, 3230-3237.	1.8	16
97	A New Family of Thermo-Responsive Polymers Based on Poly[<i>N</i> -(4-vinylbenzyl)- <i>N</i> , <i>N</i> -dialkylamine]. Macromolecules, 2013, 46, 3137-3146.	2.2	67
98	RAFT Dispersion Polymerization of Styrene in Water/Alcohol: The Solvent Effect on Polymer Particle Growth during Polymer Chain Propagation. Macromolecular Chemistry and Physics, 2013, 214, 902-911.	1.1	31
99	Brush macroâ€RAFT agent mediated dispersion polymerization of styrene in the alcohol/water mixture. Journal of Polymer Science Part A, 2013, 51, 3177-3190.	2.5	44
100	Aqueous RAFT polymerization of <i>N</i> à€isopropylacrylamideâ€mediated with hydrophilic macroâ€RAFT agent: Homogeneous or heterogeneous polymerization?. Journal of Polymer Science Part A, 2013, 51, 2188-2198.	2.5	15
101	Polymerization of styrene in alcohol/water mediated by a macroâ€RAFT agent of poly(<i>N</i> à€isopropylacrylamide) trithiocarbonate: From homogeneous to heterogeneous RAFT polymerization. Journal of Polymer Science Part A, 2012, 50, 2452-2462.	2.5	45
102	RAFTâ€mediated batch emulsion polymerization of styrene using poly[<i>N</i> à€(4â€vinylbenzyl)â€ <i>N</i> , <i>N</i> â€dibutylamine hydrochloride] trithiocarbonate as both surfactant and macroâ€RAFT agent. Journal of Polymer Science Part A, 2012, 50, 2484-2498.	2.5	22
103	Synthesis of Polymeric Yolkâ^'Shell Microspheres by Seed Emulsion Polymerization. Macromolecules, 2011, 44, 842-847.	2.2	49
104	Temperature dependent synthesis of micro- and meso-porous silica employing the thermo-responsive polymer of poly(N-isopropylacrylamide) as structure-directing agent. Journal of Sol-Gel Science and Technology, 2011, 59, 315-326.	1.1	4
105	Reversible additionâ€fragmentation chain transfer polymerization of a typical hydrophobic monomer of styrene within microreactor of shellâ€corona hollow microspheres suspending in water. Journal of Polymer Science Part A, 2010, 48, 5446-5455.	2.5	10
106	Hollow shell–corona microspheres with a mesoporous shell as potential microreactors for Au-catalyzed aerobic oxidation of alcohols. New Journal of Chemistry, 2010, 34, 1355.	1.4	32
107	Oneâ€stage synthesis of narrowly dispersed polymeric coreâ€shell microspheres. Journal of Polymer Science Part A, 2008, 46, 1192-1202.	2.5	38
108	Palladiumâ€Iminodiacetic Acid Immobilized on pHâ€Responsive Polymeric Microspheres: Efficient Quasiâ€Homogeneous Catalyst for Suzuki and Heck Reactions in Aqueous Solution. Advanced Synthesis and Catalysis, 2008, 350, 2065-2076.	2.1	59

#	Article	IF	CITATIONS
109	Surface Phase Separation and Morphology of Stimuli Responsive Complex Micelles. Macromolecular Rapid Communications, 2007, 28, 1062-1069.	2.0	48
110	Thermoresponsive hydrogel of poly(glycidyl methacrylate-co-N-isopropylacrylamide) as a nanoreactor of gold nanoparticles. Journal of Polymer Science Part A, 2007, 45, 2812-2819.	2.5	80
111	Adjustable temperature sensor with double thermoresponsiveness based on the aggregation property of binary diblock copolymers. Journal of Applied Polymer Science, 2006, 102, 3144-3148.	1.3	11
112	Expulsion of Unimers from Polystyrene-block-poly(acrylic acid) Micelles. Macromolecular Chemistry and Physics, 2006, 207, 521-527.	1.1	11
113	Raspberry-Like Aggregates Containing Secondary Nanospheres of Polystyrene-block-poly(4-vinylpyridine) Micelles. Macromolecular Rapid Communications, 2006, 27, 1833-1837.	2.0	22
114	Core-Shell-Corona Micellar Complexes between Poly(ethylene glycol)-block-poly(4-vinyl pyridine) and Polystyrene-block-poly(acrylic acid). Macromolecular Chemistry and Physics, 2005, 206, 2354-2361.	1.1	33
115	Formation of Core-Shell-Corona Micellar Complexes through Adsorption of Double Hydrophilic Diblock Copolymers into Core-Shell Micelles. Macromolecular Rapid Communications, 2005, 26, 1341-1345.	2.0	38
116	Formation of hybrid micelles between poly(ethylene glycol)-block-poly(4-vinylpyridinium) cations and sulfate anions in an aqueous milieu. Soft Matter, 2005, 1, 455.	1.2	21
117	Polymerization of Spherical Poly(styrene-b-4-vinylpyridine) Vesicles to Giant Tubes. Macromolecules, 2005, 38, 4548-4550.	2.2	20
118	Micellization of Thermo- and pH-Responsive Triblock Copolymer of Poly(ethyleneÂglycol)-b-poly(4-vinylpyridine)-b-poly(N-isopropylacrylamide). Macromolecules, 2005, 38, 8850-8852.	2.2	133
119	Thermoresponsive Micellization of Poly(ethylene glycol)-b-poly(N-isopropylacrylamide) in Water. Macromolecules, 2005, 38, 5743-5747.	2.2	212
120	Comicellization of Poly(ethylene glycol)-block-poly(acrylic acid) and Poly(4-vinylpyridine) in Ethanol. Macromolecules, 2005, 38, 899-903.	2.2	46
121	Block-Selective Solvent Influence on Morphology of the Micelles Self-Assembled by PS38-b-P(AA190-co-MA20). Macromolecular Chemistry and Physics, 2004, 205, 2017-2025.	1.1	24
122	Ice template-assisted assembly of spherical PS-b-PAA micelles into novel layer-by-layer hollow spheres. Physical Chemistry Chemical Physics, 2004, 6, 5087.	1.3	0
123	Initial copolymer concentration influence on self-assembly of PS38-b-P(AA190-co-MA20) in water. Physical Chemistry Chemical Physics, 2004, 6, 109.	1.3	25
124	Formation of flower-like aggregates from assembly of single polystyrene-b-poly(acrylic acid) micelles. New Journal of Chemistry, 2004, 28, 1038.	1.4	14
125	A crystallization driven thermoresponsive transition in a liquid crystalline polymer. Polymer Chemistry, 0, , .	1.9	1