
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8140901/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A combined bioinformatics and LC-MS-based approach for the development and benchmarking of a comprehensive database of <i>Lymnaea</i> CNS proteins. Journal of Experimental Biology, 2022, 225, .	0.8	3
2	The Great Pond Snail (<i>Lymnaea stagnalis</i>) as a Model of Aging and Age-Related Memory Impairment: An Overview. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 975-982.	1.7	8
3	Time dependent differential regulation of a novel long non-coding natural antisense RNA during long-term memory formation. Scientific Reports, 2021, 11, 3594.	1.6	3
4	Interneuronal mechanisms for learning-induced switch in a sensory response that anticipates changes in behavioral outcomes. Current Biology, 2021, 31, 1754-1761.e3.	1.8	5
5	Aging and disease-relevant gene products in the neuronal transcriptome of the great pond snail (Lymnaea stagnalis): a potential model of aging, age-related memory loss, and neurodegenerative diseases. Invertebrate Neuroscience, 2020, 20, 9.	1.8	16
6	Proactive and retroactive interference with associative memory consolidation in the snail Lymnaea is time and circuit dependent. Communications Biology, 2019, 2, 242.	2.0	18
7	A CREB2-targeting microRNA is required for long-term memory after single-trial learning. Scientific Reports, 2018, 8, 3950.	1.6	24
8	A central control circuit for encoding perceived food value. Science Advances, 2018, 4, eaau9180.	4.7	23
9	A BK channel–mediated feedback pathway links single-synapse activity with action potential sharpening in repetitive firing. Science Advances, 2018, 4, eaat1357.	4.7	14
10	Subcellular Peptide Localization in Single Identified Neurons by Capillary Microsampling Mass Spectrometry. Scientific Reports, 2018, 8, 12227.	1.6	24
11	Structureâ€dependent effects of amyloidâ€Î² on longâ€term memory in <i>LymnaeaÂstagnalis</i> . FEBS Letters, 2017, 591, 1236-1246.	1.3	12
12	Cellular and Molecular Mechanisms of Memory in Mollusks. , 2017, , 453-474.		2
13	Behavioral and Circuit Analysis of Learning and Memory in Mollusks â~†. , 2017, , 427-440.		1
14	A two-neuron system for adaptive goal-directed decision-making in Lymnaea. Nature Communications, 2016, 7, 11793.	5.8	25
15	A critical role for the self-assembly of Amyloid-β1-42 in neurodegeneration. Scientific Reports, 2016, 6, 30182.	1.6	63
16	PACAP and Learning in Invertebrates. Current Topics in Neurotoxicity, 2016, , 43-50.	0.4	0
17	Effects of $A^{\hat{l}2}$ exposure on long-term associative memory and its neuronal mechanisms in a defined neuronal network. Scientific Reports, 2015, 5, 10614.	1.6	27
18	A switch in the mode of the sodium/calcium exchanger underlies an age-related increase in the slow afterhyperpolarization. Neurobiology of Aging, 2015, 36, 2838-2849.	1.5	11

#	Article	IF	CITATIONS
19	Reversal of Age-Related Learning Deficiency by the Vertebrate PACAP and IGF-1 in a Novel Invertebrate Model of Aging: The Pond Snail (Lymnaea stagnalis). Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2014, 69, 1331-1338.	1.7	33
20	Interneuronal Mechanism for Tinbergen's Hierarchical Model of Behavioral Choice. Current Biology, 2014, 24, 2018-2024.	1.8	21
21	pT305-CaMKII stabilizes a learning-induced increase in AMPA receptors for ongoing memory consolidation after classical conditioning. Nature Communications, 2014, 5, 3967.	5.8	19
22	Axonal trafficking of an antisense RNA transcribed from a pseudogene is regulated by classical conditioning. Scientific Reports, 2013, 3, 1027.	1.6	17
23	Nonsynaptic Plasticity Underlies a Compartmentalized Increase in Synaptic Efficacy after Classical Conditioning. Current Biology, 2013, 23, 614-619.	1.8	22
24	Molecular and Cellular Mechanisms of Classical Conditioning in the Feeding System of Lymnaea. Handbook of Behavioral Neuroscience, 2013, , 251-264.	0.7	5
25	Single electrode dynamic clamp with StdpC. Journal of Neuroscience Methods, 2012, 211, 11-21.	1.3	16
26	György Kemenes. Current Biology, 2012, 22, R428-R430.	1.8	0
27	Multi-Neuronal Refractory Period Adapts Centrally Generated Behaviour to Reward. PLoS ONE, 2012, 7, e42493.	1.1	7
28	Dynamic clamp with StdpC software. Nature Protocols, 2011, 6, 405-417.	5.5	51
29	Editorial to the thematic series 'Invertebrate Circuitry'. Neural Systems & Circuits, 2011, 1, 10.	1.8	1
30	Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) and Its Receptors Are Present and Biochemically Active in the Central Nervous System of the Pond Snail Lymnaea stagnalis. Journal of Molecular Neuroscience, 2010, 42, 464-471.	1.1	24
31	Sensory driven multi-neuronal activity and associative learning monitored in an intact CNS on a multielectrode array. Journal of Neuroscience Methods, 2010, 186, 171-178.	1.3	17
32	Balanced plasticity and stability of the electrical properties of a molluscan modulatory interneuron after classical conditioning: a computational study. Frontiers in Behavioral Neuroscience, 2010, 4, 19.	1.0	18
33	What roles do tonic inhibition and disinhibition play in the control of motor programs?. Frontiers in Behavioral Neuroscience, 2010, 4, 30.	1.0	23
34	A Homolog of the Vertebrate Pituitary Adenylate Cyclase-Activating Polypeptide Is Both Necessary and Instructive for the Rapid Formation of Associative Memory in an Invertebrate. Journal of Neuroscience, 2010, 30, 13766-13773.	1.7	26
35	Analysis of Learning in Invertebrates. , 2010, , 47-64.		0
36	Delayed Intrinsic Activation of an NMDA-Independent CaM-kinase II in a Critical Time Window Is Necessary for Late Consolidation of an Associative Memory. Journal of Neuroscience, 2010, 30, 56-63.	1.7	26

#	Article	IF	CITATIONS
37	Lymnaea. Current Biology, 2009, 19, R9-R11.	1.8	42
38	Learning and Memory: How Sea Slug Behaviors Become Compulsive. Current Biology, 2009, 19, R515-R517.	1.8	0
39	Behavioral Choice: A Novel Role for Presynaptic Inhibition of Sensory Inputs. Current Biology, 2009, 19, R1087-R1088.	1.8	3
40	Food-aversive classical conditioning increases a persistent sodium current in molluscan withdrawal interneurons in a transcription dependent manner. Neurobiology of Learning and Memory, 2009, 92, 114-119.	1.0	21
41	Persistent Sodium Current Is a Nonsynaptic Substrate for Long-Term Associative Memory. Current Biology, 2008, 18, 1221-1226.	1.8	64
42	Different phases of long-term memory require distinct temporal patterns of PKA activity after single-trial classical conditioning. Learning and Memory, 2008, 15, 694-702.	0.5	28
43	Non-synaptic neuronal mechanisms of learning and memory in gastropod molluscs. Frontiers in Bioscience - Landmark, 2008, Volume, 4051.	3.0	24
44	Dynamic control of a central pattern generator circuit: a computational model of the snail feeding network. European Journal of Neuroscience, 2007, 25, 2805-2818.	1.2	38
45	Computational model of a modulatory cell type in the feeding network of the snail, Lymnaea stagnalis. BMC Neuroscience, 2007, 8, .	0.8	1
46	Requirement of New Protein Synthesis of a Transcription Factor for Memory Consolidation: Paradoxical Changes in mRNA and Protein Levels of C/EBP. Journal of Molecular Biology, 2006, 356, 569-577.	2.0	53
47	Persistent Sodium Current Is a Target for cAMP-Induced Neuronal Plasticity in a State-Setting Modulatory Interneuron. Journal of Neurophysiology, 2006, 95, 453-463.	0.9	39
48	Role of Delayed Nonsynaptic Neuronal Plasticity in Long-Term Associative Memory. Current Biology, 2006, 16, 1269-1279.	1.8	98
49	Phase-Dependent Molecular Requirements for Memory Reconsolidation: Differential Roles for Protein Synthesis and Protein Kinase A Activity. Journal of Neuroscience, 2006, 26, 6298-6302.	1.7	65
50	Fine tuning of olfactory orientation behaviour by the interaction of oscillatory and single neuronal activity. European Journal of Neuroscience, 2005, 22, 2833-2844.	1.2	21
51	Activation of MAPK is necessary for long-term memory consolidation following food-reward conditioning. Learning and Memory, 2005, 12, 538-545.	0.5	49
52	Loss of Self-Inhibition Is a Cellular Mechanism for Episodic Rhythmic Behavior. Current Biology, 2003, 13, 116-124.	1.8	44
53	A Persistent Cellular Change in a Single Modulatory Neuron Contributes to Associative Long-Term Memory. Current Biology, 2003, 13, 1064-1069.	1.8	51
54	Cyclic AMP response element-binding (CREB)-like proteins in a molluscan brain: cellular localization and learning-induced phosphorylation. European Journal of Neuroscience, 2003, 18, 1223-1234.	1.2	62

#	Article	IF	CITATIONS
55	Critical Time-Window for NO–cGMP-Dependent Long-Term Memory Formation after One-Trial Appetitive Conditioning. Journal of Neuroscience, 2002, 22, 1414-1425.	1.7	137
56	Endogenous and Network Properties of <i>Lymnaea</i> Feeding Central Pattern Generator Interneurons. Journal of Neurophysiology, 2002, 88, 1569-1583.	0.9	73
57	Suppression of Nitric Oxide (NO)-Dependent Behavior by Double-Stranded RNA-Mediated Silencing of a Neuronal NO Synthase Gene. Journal of Neuroscience, 2002, 22, RC227-RC227.	1.7	41
58	Voltage-gated ionic currents in an identified modulatory cell type controlling molluscan feeding. European Journal of Neuroscience, 2002, 15, 109-119.	1.2	39
59	Development of the nitric oxide/cGMP system in the embryonic and juvenile pond snail, Lymnaea stagnalis L. A comparative in situ hybridization, histochemical and immunohistochemical study. Journal of Neurocytology, 2002, 31, 131-147.	1.6	12
60	Selective Expression of Electrical Correlates of Differential Appetitive Classical Conditioning in a Feeding Network. Journal of Neurophysiology, 2001, 85, 89-97.	0.9	15
61	Multiple Types of Control by Identified Interneurons in a Sensory-Activated Rhythmic Motor Pattern. Journal of Neuroscience, 2001, 21, 2903-2911.	1.7	52
62	A Systems Approach to the Cellular Analysis of Associative Learning in the Pond Snail Lymnaea. Learning and Memory, 2000, 7, 124-131.	0.5	162
63	Cellular Traces of Behavioral Classical Conditioning Can Be Recorded at Several Specific Sites in a Simple Nervous System. Journal of Neuroscience, 1999, 19, 347-357.	1.7	65
64	Electrophysiological and Behavioral Analysis of Lip Touch as a Component of the Food Stimulus in the Snail <i>Lymnaea</i> . Journal of Neurophysiology, 1999, 81, 1261-1273.	0.9	30
65	Neural Modulation of Gut Motility by Myomodulin Peptides and Acetylcholine in the Snail Lymnaea. Journal of Neurophysiology, 1998, 79, 2460-2474.	0.9	43
66	Neurophysiological Correlates of Unconditioned and Conditioned Feeding Behavior in the Pond Snail Lymnaea stagnalis. Journal of Neurophysiology, 1998, 79, 3030-3040.	0.9	41
67	Pattern-Generating Role for Motoneurons in a Rhythmically Active Neuronal Network. Journal of Neuroscience, 1998, 18, 3669-3688.	1.7	65
68	In Vitro Appetitive Classical Conditioning of the Feeding Response in the Pond Snail <i>Lymnaea stagnalis</i> . Journal of Neurophysiology, 1997, 78, 2351-2362.	0.9	66
69	In Vivo neuropharmacological and In vitro laser ablation techniques as tools in the analysis of neuronal circuits underlying behavior in a molluscan model system. General Pharmacology, 1997, 29, 7-15.	0.7	25
70	Opioid peptides in the nervous system ofAplysia: A combined biochemical, immunocytochemical, and electrophysiological study. Cellular and Molecular Neurobiology, 1995, 15, 239-256.	1.7	13
71	Novel interneuron having hybrid modulatory-central pattern generator properties in the feeding system of the snail, Lymnaea stagnalis. Journal of Neurophysiology, 1995, 73, 112-124.	0.9	42
72	Behavioral role for nitric oxide in chemosensory activation of feeding in a mollusc. Journal of Neuroscience, 1995, 15, 7653-7664.	1.7	171

#	Article	IF	CITATIONS
73	Modulatory role for the serotonergic cerebral giant cells in the feeding system of the snail, Lymnaea. II. Photoinactivation. Journal of Neurophysiology, 1994, 72, 1372-1382.	0.9	69
74	Processing of mechano- and chemosensory information in the lip nerve and cerebral ganglia of the snailHelix pomatia L. Neuroscience and Behavioral Physiology, 1994, 24, 77-87.	0.2	8
75	Training in a novel environment improves the appetitive learning performance of the snail, Lymnaea stagnalis. Behavioral and Neural Biology, 1994, 61, 139-149.	2.3	51
76	Neurophysiological correlates of tactile stimulus-induced whole-body eversion, a novel type of behavior in the snailHelix pomatia L. Brain Research, 1993, 612, 16-27.	1.1	5
77	Cholinergic interneurons in the feeding system of the pond snail Lymnaea stagnalis. II. N1 interneurons make cholinergic synapses with feeding m otoneurons. Philosophical Transactions of the Royal Society B: Biological Sciences, 1992, 336, 167-180.	1.8	32
78	Ultrastructural, biochemical and electrophysiological changes induced by 5,6-dihydroxytryptamine in the CNS of the snailHelix pomatia L Brain Research, 1992, 578, 221-234.	1.1	26
79	Distinct receptors for Leu- and Met-enkephalin on the metacerebral giant cell ofAplysia. Cellular and Molecular Neurobiology, 1992, 12, 107-119.	1.7	16
80	Interneuronal monosynaptic peptidergic contact responsible for the bursting activity generation in the rpal neuron of the snail Helix pomatia L. is axo-axonal. Comparative Biochemistry and Physiology A, Comparative Physiology, 1991, 99, 371-373.	0.7	4
81	Photoinactivation of neurones axonally filled with the fluorescent dye 5(6)-carboxyfluorescein in the pond snail, Lymnaea stagnalis. Journal of Neuroscience Methods, 1991, 39, 207-216.	1.3	17
82	The modulatory peptide SCPb inhibits feeding in the mollusc, Lymnaea stagnalis. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1991, 100, 615-618.	0.2	2
83	Dopamine-immunoreactive neurones in the central nervous system of the pond snailLymnaea stagnalis. Journal of Comparative Neurology, 1991, 307, 214-224.	0.9	61
84	Behavioural and biochemical changes in the feeding system of Lymnaea induced by the dopamine and serotonin neurotoxins 6-hydroxydopamine and 5,6-dihydroxytryptamine. Philosophical Transactions of the Royal Society B: Biological Sciences, 1990, 329, 243-255.	1.8	49
85	A comparison of four techniques for mapping the distribution of serotonin and serotonin-containing neurons in fixed and living ganglia of the snail,Lymnaea. Journal of Neurocytology, 1989, 18, 193-208.	1.6	83
86	Central and peripheral connections of an identified pedal neurone modifying pneumostome movements in Helix. Comparative Biochemistry and Physiology A, Comparative Physiology, 1989, 94, 735-741.	0.7	6
87	Goal-tracking behavior in the pond snail, Lymnaea stagnalis. Behavioral and Neural Biology, 1989, 52, 260-270.	2.3	23
88	Appetitive learning in snails shows characteristics of conditioning in vertebrates. Brain Research, 1989, 489, 163-166.	1.1	66
89	Monosynaptic connections between serotonin-containing neurones labelled by 5,6-dihydroxytryptamine-induced pigmentation in the snailHelix pomatia L Brain Research, 1989, 484, 404-407.	1.1	21
90	Sensory responses and axonal morphology of two different types of cerebral neurones in Helix pomatia L. Comparative Biochemistry and Physiology A, Comparative Physiology, 1987, 88, 641-646.	0.7	3

6

#	Article	IF	CITATIONS
91	Selective in vivo labelling of serotonergic neurones by 5,6-dihydroxytryptamine in the snail Helix pomatia L. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1986, 85, 419-425.	0.2	11