
Roland Barthel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8140784/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Groundwater and Surface Water Interaction at the Regional-scale – A Review with Focus on Regional Integrated Models. Water Resources Management, 2016, 30, 1-32.	3.9	214
2	A review of contamination of surface-, ground-, and drinking water in Sweden by perfluoroalkyl and polyfluoroalkyl substances (PFASs). Ambio, 2017, 46, 335-346.	5.5	156
3	Multiscale evaluation of the Standardized Precipitation Index as aÂgroundwater drought indicator. Hydrology and Earth System Sciences, 2016, 20, 1117-1131.	4.9	133
4	An integrated modelling framework for simulating regional-scale actor responses to global change in the water domain. Environmental Modelling and Software, 2008, 23, 1095-1121.	4.5	88
5	Integrated Modeling of Global Change Impacts on Agriculture and Groundwater Resources. Water Resources Management, 2012, 26, 1929-1951.	3.9	62
6	Combination of soil-water balance models and water-table fluctuation methods for evaluation and improvement of groundwater recharge calculations. Hydrogeology Journal, 2011, 19, 1487-1502.	2.1	54
7	Interdisciplinary Collaboration between Natural and Social Sciences – Status and Trends Exemplified in Groundwater Research. PLoS ONE, 2017, 12, e0170754.	2.5	47
8	Using the Multiactor-Approach in Glowa-Danube to Simulate Decisions for the Water Supply Sector Under Conditions of Global Climate Change. Water Resources Management, 2010, 24, 239-275.	3.9	44
9	Development of a regional model for integrated management of water resources at the basin scale. Physics and Chemistry of the Earth, 2008, 33, 175-182.	2.9	37
10	Integrated regional modelling and scenario development to evaluate future water demand under global change conditions. Mitigation and Adaptation Strategies for Global Change, 2011, 16, 477-498.	2.1	37
11	Indexâ€Based Characterization and Quantification of Groundwater Dynamics. Water Resources Research, 2019, 55, 5575-5592.	4.2	33
12	What can we learn from long-term groundwater data to improve climate change impact studies?. Hydrology and Earth System Sciences, 2011, 15, 3861-3875.	4.9	32
13	HESS Opinions "Integration of groundwater and surface water research: an interdisciplinary problem?". Hydrology and Earth System Sciences, 2014, 18, 2615-2628.	4.9	32
14	Integrated assessment of groundwater resources in the Ouémé basin, Benin, West Africa. Physics and Chemistry of the Earth, 2009, 34, 236-250.	2.9	30
15	Large-scale water resources management within the framework of GLOWA-Danube. Part A: The groundwater model. Physics and Chemistry of the Earth, 2005, 30, 372-382.	2.9	29
16	An inter-comparison of similarity-based methods for organisation and classification of groundwater hydrographs. Journal of Hydrology, 2018, 559, 222-237.	5.4	29
17	Changes in seasonality of groundwater level fluctuations in a temperate-cold climate transition zone. Journal of Hydrology X, 2020, 8, 100062.	1.6	29
18	Aspects of choosing appropriate concepts for modelling groundwater resources in regional integrated water resources management – Examples from the Neckar (Germany) and Ouémé catchment (Benin). Physics and Chemistry of the Earth, 2008, 33, 92-114.	2.9	28

ROLAND BARTHEL

#	Article	IF	CITATIONS
19	Linking scientific disciplines: Hydrology and social sciences. Journal of Hydrology, 2017, 550, 441-452.	5.4	28
20	Large-scale water resources management within the framework of GLOWA-Danube—The water supply model. Physics and Chemistry of the Earth, 2005, 30, 383-388.	2.9	21
21	An indicator approach to assessing and predicting the quantitative state of groundwater bodies on the regional scale with a special focus on the impacts of climate change. Hydrogeology Journal, 2011, 19, 525-546.	2.1	21
22	Common problematic aspects of coupling hydrological models with groundwater flow models on the river catchment scale. Advances in Geosciences, 0, 9, 63-71.	12.0	20
23	Linking the physical and the socio-economic compartments of an integrated water and land use management model on a river basin scale using an object-oriented water supply model. Physics and Chemistry of the Earth, 2005, 30, 389-397.	2.9	19
24	Interdisciplinary and participatory approaches: the key to effective groundwater management. Hydrogeology Journal, 2017, 25, 1923-1926.	2.1	19
25	Comparative hydrogeology – reference analysis of groundwater dynamics from neighbouring observation wells. Hydrological Sciences Journal, 2020, 65, 1685-1706.	2.6	18
26	A call for more fundamental science in regional hydrogeology. Hydrogeology Journal, 2014, 22, 507-510.	2.1	16
27	Physiographic and Climatic Controls on Regional Groundwater Dynamics. Water Resources Research, 2020, 56, e2019WR026545.	4.2	15
28	Modeling Ground Water Flow in Alluvial Mountainous Catchments on a Watershed Scale. Ground Water, 2008, 46, 695-705.	1.3	14
29	Hydroclimate changes over Sweden in the twentieth and twenty-first centuries: a millennium perspective. Geografiska Annaler, Series A: Physical Geography, 2021, 103, 103-131.	1.5	13
30	Current understanding of groundwater recharge and groundwater drought in Sweden compared to countries with similar geology and climate. Geografiska Annaler, Series A: Physical Geography, 2021, 103, 323-345.	1.5	12
31	Conceptualization and implementation of a regional groundwater model for the Neckar catchment in the framework of an integrated regional model. Advances in Geosciences, 0, 5, 105-111.	12.0	10
32	Recent trends in hydroclimate and groundwater levels in a region with seasonal frost cover. Journal of Hydrology, 2021, 602, 126732.	5.4	9
33	Global change impacts on the Upper Danube Catchment (Central Europe): a study of participatory modeling. Regional Environmental Change, 2016, 16, 1595-1611.	2.9	8
34	Similarity-based approaches in hydrogeology: proposal of a new concept for data-scarce groundwater resource characterization and prediction. Hydrogeology Journal, 2021, 29, 1693.	2.1	8
35	Systematic visual analysis of groundwater hydrographs: potential benefits and challenges. Hydrogeology Journal, 2022, 30, 359-378.	2.1	7
36	Preface "Integration of hydrological models on different spatial and temporal scales". Advances in Geosciences, 0, 9, 1-1.	12.0	4

ROLAND BARTHEL

#	Article	IF	CITATIONS
37	Storage cascade vs. MODFLOW for the modelling of groundwater flow in the context of the calibration of a hydrological model in the Ammer catchment. Advances in Geosciences, 0, 9, 101-108.	12.0	3
38	Integration of water balance models in RIVERTWIN. Advances in Geosciences, 0, 9, 85-91.	12.0	3
39	Marrying Hydrological Modelling and Integrated Assessment for the needs of Water Resource Management. Proceedings of the International Association of Hydrological Sciences, 0, 364, 351-356.	1.0	3
40	Using multi-objective optimisation to integrate alpine regions in groundwater flow models. Advances in Geosciences, 0, 5, 19-23.	12.0	2
41	Editor's Message: How much interdisciplinary collaboration between the natural and social sciences is there in groundwater research?. Hydrogeology Journal, 2017, 25, 1229-1231.	2.1	1
42	Extraction of Water for Public Drinking Water Supply. , 2016, , 165-170.		1
43	Groundwater Contour Maps for the Alluvial Aquifers of the Upper Danube Basin. , 2016, , 207-213.		1
44	DeepActor Models in DANUBIA. , 2016, , 29-36.		1
45	Integrative hydrologic modeling techniques for sustainable water management regarding Global Environmental Changes in the Upper Danube river basin. , 2004, , 239-253.		1
46	Estimating the Change in Groundwater Quality Resulting from Changes to Land Use and Groundwater Recharge. , 2016, , 601-607.		0
47	Hydrogeology – A Consistent Basin-Wide Representation of the Major Aquifers in the Upper Danube Basin. , 2016, , 125-131.		0
48	Changes to the Quantitative Status of Groundwater and the Water Supply. , 2016, , 561-567.		0
49	Total Extraction and Total Water Supply per Community. , 2016, , 215-220.		0
50	Modelling the Effects of Global Change on Drinking Water Supply: The DeepWaterSupply Decision Model. , 2016, , 221-227.		0