Allan D Kirk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8140771/publications.pdf

Version: 2024-02-01

66315 6,784 140 42 citations h-index papers

g-index 280 280 280 5053 docs citations times ranked citing authors all docs

62565

80

#	Article	IF	CITATIONS
1	Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nature Medicine, 1999, 5, 686-693.	15.2	801
2	Identification of a B cell signature associated with renal transplant tolerance in humans. Journal of Clinical Investigation, 2010, 120, 1836-1847.	3.9	623
3	Immunocompetent T-Cells with a Memory-Like Phenotype are the Dominant Cell Type Following Antibody-Mediated T-Cell Depletion. American Journal of Transplantation, 2005, 5, 465-474.	2.6	435
4	RESULTS FROM A HUMAN RENAL ALLOGRAFT TOLERANCE TRIAL EVALUATING THE HUMANIZED CD52-SPECIFIC MONOCLONAL ANTIBODY ALEMTUZUMAB (CAMPATH-1H). Transplantation, 2003, 76, 120-129.	0.5	413
5	THE EFFECT OF SOLUBLE COMPLEMENT RECEPTOR TYPE 1 ON HYPERACUTE REJECTION OF PORCINE XENOGRAFTS. Transplantation, 1994, 57, 363-370.	0.5	244
6	Cd40 Ligand (Cd154) Triggers a Short-Term Cd4+ T Cell Activation Response That Results in Secretion of Immunomodulatory Cytokines and Apoptosis. Journal of Experimental Medicine, 2000, 191, 651-660.	4.2	185
7	Alefacept promotes co-stimulation blockade based allograft survival in nonhuman primates. Nature Medicine, 2009, 15, 746-749.	15.2	183
8	CMV reactivation drives posttransplant T-cell reconstitution and results in defects in the underlying TCRÎ ² repertoire. Blood, 2015, 125, 3835-3850.	0.6	147
9	Crossing the bridge: large animal models in translational transplantation research. Immunological Reviews, 2003, 196, 176-196.	2.8	135
10	Induction Immunosuppression. Transplantation, 2006, 82, 593-602.	0.5	134
11	Cryopreserved Mesenchymal Stromal Cells Are Susceptible to T-Cell Mediated Apoptosis Which Is Partly Rescued by IFNÎ ³ Licensing. Stem Cells, 2016, 34, 2429-2442.	1.4	131
12	INDUCTION THERAPY WITH MONOCLONAL ANTIBODIES SPECIFIC FOR CD80 AND CD86 DELAYS THE ONSET OF ACUTE RENAL ALLOGRAFT REJECTION IN NON-HUMAN PRIMATES1. Transplantation, 2001, 72, 377-384.	0.5	128
13	Functionally Significant Renal Allograft Rejection Is Defined by Transcriptional Criteria. American Journal of Transplantation, 2005, 5, 573-581.	2.6	125
14	Kidney transplantation with rabbit antithymocyte globulin induction and sirolimus monotherapy. Lancet, The, 2002, 360, 1662-1664.	6.3	116
15	Results from a Human Renal Allograft Tolerance Trial Evaluating T-Cell Depletion with Alemtuzumab Combined with Deoxyspergualin. Transplantation, 2005, 80, 1051-1059.	0.5	115
16	Actin Cytoskeletal Disruption following Cryopreservation Alters the Biodistribution of Human Mesenchymal Stromal Cells InÂVivo. Stem Cell Reports, 2014, 3, 60-72.	2.3	111
17	LFA-1–specific therapy prolongs allograft survival in rhesus macaques. Journal of Clinical Investigation, 2010, 120, 4520-4531.	3.9	106
18	Molecular and immunohistochemical characterization of the onset and resolution of human renal allograft ischemia-reperfusion injury. Transplantation, 2002, 74, 916-923.	0.5	95

#	Article	IF	CITATIONS
19	THE HUMAN ANTIPORCINE CELLULAR REPERTOIRE. Transplantation, 1993, 55, 924-931.	0.5	90
20	Platelet-derived or soluble CD154 induces vascularized allograft rejection independent of cell-bound CD154. Journal of Clinical Investigation, 2006, 116, 769-774.	3.9	90
21	Composite Tissue Allotransplantation: Classification of Clinical Acute Skin Rejection. Transplantation, 2005, 80, 1676-1680.	0.5	88
22	TREATMENT WITH THE HUMANIZED CD154-SPECIFIC MONOCLONAL ANTIBODY, hu5C8, PREVENTS ACUTE REJECTION OF PRIMARY SKIN ALLOGRAFTS IN NONHUMAN PRIMATES1. Transplantation, 2001, 72, 1473-1478.	0.5	84
23	Platelets deliver costimulatory signals to antigen-presenting cells: A potential bridge between injury and immune activation. Experimental Hematology, 2004, 32, 135-139.	0.2	82
24	Composite Tissue Allotransplantation: Development of a Preclinical Model in Nonhuman Primates. Transplantation, 2005, 80, 1447-1454.	0.5	79
25	IDEC-131 (Anti-CD154), Sirolimus and Donor-Specific Transfusion Facilitate Operational Tolerance in Non-Human Primates. American Journal of Transplantation, 2005, 5, 1032-1041.	2.6	79
26	Transplantation Tolerance: A Look at the Nonhuman Primate Literature in the Light of Modern Tolerance Theories. Critical Reviews in Immunology, 1999, 19, 40.	1.0	78
27	The Future of Organ and Tissue Transplantation. JAMA - Journal of the American Medical Association, 1999, 282, 1076.	3.8	72
28	Reply to Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nature Medicine, 2000, 6, 114-114.	15,2	68
29	Rapid, comprehensive analysis of human Cytokine mRNA and its application to the study of acute renal allograft rejection. Human Immunology, 1995, 43, 113-128.	1.2	67
30	Studies Investigating Pretransplant Donor-Specific Blood Transfusion, Rapamycin, and the CD154-Specific Antibody IDEC-131 in a Nonhuman Primate Model of Skin Allotransplantation. Journal of Immunology, 2003, 170, 2776-2782.	0.4	66
31	Memory T-cell-specific therapeutics in organ transplantation. Current Opinion in Organ Transplantation, 2009, 14, 643-649.	0.8	66
32	The role of CD154 in organ transplant rejection and acceptance. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 691-702.	1.8	64
33	Combination induction therapy with monoclonal antibodies specific for CD80, CD86, and CD154 in nonhuman primate renal transplantation. Transplantation, 2002, 74, 1365-1369.	0.5	55
34	Premature T Cell Senescence in Pediatric CKD. Journal of the American Society of Nephrology: JASN, 2017, 28, 359-367.	3.0	53
35	Nucleic acid scavenging microfiber mesh inhibits trauma-induced inflammation and thrombosis. Biomaterials, 2017, 120, 94-102.	5.7	52
36	The contribution of Fc effector mechanisms in the efficacy of anti-CD154 immunotherapy depends on the nature of the immune challenge. International Immunology, 2004, 16, 1583-1594.	1.8	49

#	Article	IF	Citations
37	Memory T cells in organ transplantation: progress and challenges. Nature Reviews Nephrology, 2016, 12, 339-347.	4.1	49
38	RENAL ALLOGRAFT-INFIL TRATING LYMPHOCYTES A PROSPECTIVE ANALYSIS OF IN VITRO GROWTH CHARACTERISTICS AND CLINICAL RELEVANCE. Transplantation, 1992, 53, 329-337.	0.5	48
39	Strategies for minimizing immunosuppression in kidney transplantation. Transplant International, 2005, 18, 2-14.	0.8	48
40	B cells and transplantation tolerance. Nature Reviews Nephrology, 2010, 6, 584-593.	4.1	45
41	Immunosuppression Withdrawal in Liver Transplant Recipients on Sirolimus. Hepatology, 2020, 72, 569-583.	3 . 6	45
42	POSTTRANSPLANT DIASTOLIC HYPERTENSION. Transplantation, 1997, 64, 1716-1720.	0.5	45
43	Circulating mitochondria in organ donors promote allograft rejection. American Journal of Transplantation, 2019, 19, 1917-1929.	2.6	44
44	Human Monocytes as Intermediaries between Allogeneic Endothelial Cells and Allospecific T Cells: A Role for Direct Scavenger Receptor-Mediated Endothelial Membrane Uptake in the Initiation of Alloimmunity. Journal of Immunology, 2006, 176, 750-761.	0.4	43
45	Successful desensitization with proteasome inhibition and costimulation blockade in sensitized nonhuman primates. Blood Advances, 2017, 1, 2115-2119.	2.5	39
46	SUCCESSFUL CONVERSION FROM CONVENTIONAL IMMUNOSUPPRESSION TO ANTI-CD154 MONOCLONAL ANTIBODY COSTIMULATORY MOLECULE BLOCKADE IN RHESUS RENAL ALLOGRAFT RECIPIENTS1,2. Transplantation, 2001, 72, 587-597.	0.5	38
47	Costimulation blockade: towards clinical application. Frontiers in Bioscience - Landmark, 2008, 13, 2120.	3.0	38
48	The road to tolerance: renal transplant tolerance induction in nonhuman primate studies and clinical trials. Transplant Immunology, 2004, 13, 87-99.	0.6	34
49	Mitigation of autophagy ameliorates hepatocellular damage following ischemia-reperfusion injury in murine steatotic liver. American Journal of Physiology - Renal Physiology, 2014, 307, G1088-G1099.	1.6	34
50	Efficacy and Toxicity of a Protocol Using Sirolimus, Tacrolimus and Daclizumab in a Nonhuman Primate Renal Allotransplant Model. American Journal of Transplantation, 2002, 2, 381-385.	2.6	33
51	Transplant Tolerance: Converging on a Moving Target. Transplantation, 2006, 81, 1-6.	0.5	32
52	Alemtuzumab. Transplantation, 2007, 84, 1545-1547.	0.5	31
53	Lessons of War: Turning Data Into Decisions. EBioMedicine, 2015, 2, 1235-1242.	2.7	29
54	Characterization of T cells expressing the \hat{l}^3/\hat{l}^\prime antigen receptor in human renal allografts. Human Immunology, 1993, 36, 11-19.	1.2	28

#	Article	IF	Citations
55	Potential of costimulation-based therapies for composite tissue allotransplantation. Microsurgery, 2000, 20, 430-434.	0.6	27
56	Kidney transplantation using alemtuzumab, belatacept, and sirolimus: Five-year follow-up. American Journal of Transplantation, 2020, 20, 3609-3619.	2.6	25
57	De novo belatacept in clinical vascularized composite allotransplantation. American Journal of Transplantation, 2018, 18, 1804-1809.	2.6	23
58	Variables affecting the T cell receptor \hat{V}^2 repertoire heterogeneity of T cells infiltrating human renal allografts. Transplant Immunology, 1993, 1, 217-227.	0.6	21
59	Clinical Tolerance 2008. Transplantation, 2009, 87, 953-955.	0.5	21
60	Extracellular Mitochondrial DNA and N-Formyl Peptides in Trauma and Critical Illness: A Systematic Review. Critical Care Medicine, 2018, 46, 2018-2028.	0.4	20
61	Immunologic Aging in Adults with Congenital Heart Disease: Does Infant Sternotomy Matter?. Pediatric Cardiology, 2015, 36, 1411-1416.	0.6	19
62	Deceased donor multidrug resistance protein 1 and caveolin 1 gene variants may influence allograft survival in kidney transplantation. Kidney International, 2015, 88, 584-592.	2.6	18
63	Optimization of de novo belatacept-based immunosuppression administered to renal transplant recipients. American Journal of Transplantation, 2021, 21, 1691-1698.	2.6	18
64	Preclinical evaluation of tolerance induction protocols and islet transplantation in non-human primates. Immunological Reviews, 2001, 183, 214-222.	2.8	16
65	CD154 Blockade, Sirolimus, and Donor-Specific Transfusion Prevents Renal Allograft Rejection in Cynomolgus Monkeys Despite Homeostatic T-Cell Activation. Transplantation, 2007, 83, 1219-1225.	0.5	15
66	Viral-induced CD28 loss evokes costimulation independent alloimmunity. Journal of Surgical Research, 2015, 196, 241-246.	0.8	15
67	Less Is More: Maintenance Minimization as a Step Toward Tolerance. American Journal of Transplantation, 2003, 3, 643-645.	2.6	13
68	Modulating the wayward T cell: New horizons with immune checkpoint inhibitor treatments in autoimmunity, transplant, and cancer. Journal of Autoimmunity, 2020, 115, 102546.	3.0	13
69	Deceased-Donor Apolipoprotein L1 Renal-Risk Variants Have Minimal Effects on Liver Transplant Outcomes. PLoS ONE, 2016, 11, e0152775.	1.1	12
70	Challenges for the clinical application of transplant tolerance strategies. Current Opinion in Organ Transplantation, 2000, 5, 108-113.	0.8	11
71	Effects of Combined Treatment with CD25- and CD154-Specific Monoclonal Antibodies in Non-Human Primate Allotransplantation. American Journal of Transplantation, 2003, 3, 1350-1354.	2.6	11
72	The role of human CD46 in early xenoislet engraftment in a dual transplant model. Xenotransplantation, 2019, 26, e12540.	1.6	11

#	Article	IF	CITATIONS
73	Tolerance: is it achievable in pediatric solid organ transplantation?. Pediatric Clinics of North America, 2003, 50, 1261-1281.	0.9	10
74	Ethics in the quest for transplant tolerance. Transplantation, 2004, 77, 947-951.	0.5	10
75	Kidney Xenotransplantation. Clinical Journal of the American Society of Nephrology: CJASN, 2019, 14, 620-622.	2.2	10
76	Th17 cell inhibition in a costimulation blockadeâ€based regimen for vascularized composite allotransplantation using a nonhuman primate model. Transplant International, 2020, 33, 1294-1301.	0.8	10
77	Social determinants of health data in solid organ transplantation: National data sources and future directions. American Journal of Transplantation, 2022, 22, 2293-2301.	2.6	10
78	Long-Term Toxicity of Immunosuppressive Therapy. , 2015, , 1354-1363.		9
79	B cell reconstitution following alemtuzumab induction under a belatacept-based maintenance regimen. American Journal of Transplantation, 2020, 20, 653-662.	2.6	9
80	An age-independent gene signature for monitoring acute rejection in kidney transplantation. Theranostics, 2020, 10, 6977-6986.	4.6	9
81	Rejection of xenogeneic porcine islets in humanized mice is characterized by graft―nfiltrating Th17 cells and activated B cells. American Journal of Transplantation, 2020, 20, 1538-1550.	2.6	8
82	Coagulation, inflammation, and CD46 transgene expression in neonatal porcine islet xenotransplantation. Xenotransplantation, 2021, 28, e12680.	1.6	8
83	Expression of Mitochondrial-Encoded Genes in Blood Differentiate Acute Renal Allograft Rejection. Frontiers in Medicine, 2017, 4, 185.	1.2	7
84	IL-7 receptor heterogeneity as a mechanism for repertoire change during postdepletional homeostatic proliferation and its relation to costimulation blockade–resistant rejection. American Journal of Transplantation, 2018, 18, 720-730.	2.6	7
85	IL-21 Biased Alemtuzumab Induced Chronic Antibody-Mediated Rejection Is Reversed by LFA-1 Costimulation Blockade. Frontiers in Immunology, 2018, 9, 2323.	2.2	7
86	Toll-like receptor activation as a biomarker in traumatically injured patients. Journal of Surgical Research, 2018, 231, 270-277.	0.8	7
87	Tailored use of belatacept in adolescent kidney transplantation. American Journal of Transplantation, 2020, 20, 884-888.	2.6	7
88	Relationship between antithymocyte globulin, T cell phenotypes, and clinical outcomes in pediatric kidney transplantation. American Journal of Transplantation, 2021, 21, 766-775.	2.6	7
89	Functional Characteristics and Phenotypic Plasticity of CD57+PD1â^' CD4 T Cells and Their Relationship with Transplant Immunosuppression. Journal of Immunology, 2021, 206, 1668-1676.	0.4	7
90	Assessing Quality of Surgical Real-World Data from an Automated Electronic Health Record Pipeline. Journal of the American College of Surgeons, 2020, 230, 295-305e12.	0.2	7

#	Article	IF	Citations
91	FDA jeopardizes the lives of lung transplant recipients and in the process severely increases the cost to develop new immunosuppression. American Journal of Transplantation, 2019, 19, 971-972.	2.6	6
92	Alefacept (LFA3-Ig), portal venous donor specific transfusion (PVDST), and sirolimus prolong renal allograft survival in non-human primates. Journal of the American College of Surgeons, 2006, 203, S92.	0.2	5
93	A comparative study of humanâ€and rhesusâ€specific antithymocyte globulins in Rhesus macaques. Clinical Transplantation, 2021, 35, e14369.	0.8	4
94	Cultured thymus tissue implementation promotes donor-specific tolerance to allogeneic heart transplants. JCI Insight, 2020, 5, .	2.3	4
95	Context-based therapy: A conceptual framework for transplantation tolerance. Transplantation Reviews, 2002, 16, 142-162.	1.2	3
96	The clinical application of monoclonal antibody therapies in renal transplantation. Expert Opinion on Emerging Drugs, 2004, 9, 23-37.	1.0	3
97	What's New-What's Hot in Basic Science: American Transplant Congress 2004. American Journal of Transplantation, 2004, 4, 1741-1746.	2.6	3
98	Belatacept., 2014,, 314-319.		3
99	T Cell Repertoire Maturation Induced by Persistent and Latent Viral Infection Is Insufficient to Induce Costimulation Blockade Resistant Organ Allograft Rejection in Mice. Frontiers in Immunology, 2018, 9, 1371.	2.2	3
100	Secondary lymphoid tissue and costimulation-blockade resistant rejection: A nonhuman primate renal transplant study. American Journal of Transplantation, 2019, 19, 2350-2357.	2.6	3
101	Vascularized composite allotransplants as a mechanistic model for allograft rejection – an experimental study. Transplant International, 2021, 34, 572-584.	0.8	3
102	Modulation of Xenogeneic T Cell Proliferation by B7 and mTOR Blockade of T cells and Porcine Endothelial Cells. Transplantation, 2021, Publish Ahead of Print, .	0.5	3
103	COSTIMULATORY PATHWAYS ARE ACTIVE IN XENOGENEIC IMMUNE RESPONSES Transplantation, 1998, 65, 87.	0.5	3
104	IFI16-STING-NF-κB signaling controls exogenous mitochondrion-induced endothelial activation. American Journal of Transplantation, 2022, 22, 1578-1592.	2.6	3
105	Kidney transplantation with rabbit antithymocyte globulin and sirolimus monotherapy. Lancet, The, 2003, 361, 969-970.	6.3	2
106	Eudaimonia: An Aristotelian approach to transplantation. American Journal of Transplantation, 2021, 21, 2014-2017.	2.6	2
107	Antibodies and Fusion Proteins. , 2008, , 309-332.		2
108	Single-Cell–Based High-Throughput Ig and TCR Repertoire Sequencing Analysis in Rhesus Macaques. Journal of Immunology, 2022, 208, 762-771.	0.4	2

#	Article	IF	Citations
109	Immunologic monitoring of the transplant recipient: challenges and approaches with antibody induction. Transplantation Reviews, 2003, 17, S20-S25.	1.2	1
110	Mammalian target of rapamycin inhibitors in transplantation: novel immunosuppressive strategies with sirolimus. Current Opinion in Organ Transplantation, 2004, 9, 400-405.	0.8	1
111	Antilymphocyte Globulin, Monoclonal Antibodies, and Fusion Proteins., 2014,, 287-313.		1
112	Immunosuppressive Biologic Agents. , 2015, , 1343-1353.		1
113	Peripheral blood detection of systemic graft-specific xeno-antibodies following transplantation of human neural progenitor cells into the porcine spinal cord. Journal of Clinical Neuroscience, 2018, 48, 173-180.	0.8	1
114	C4: An experiment in academic dialogue. American Journal of Transplantation, 2018, 18, 2619-2619.	2.6	1
115	The best transplant strategy? It depends. American Journal of Transplantation, 2020, 20, 1221-1222.	2.6	1
116	Undernutrition and Hypoleptinemia Modulate Alloimmunity and CMV-specific Viral Immunity in Transplantation. Transplantation, 2021, 105, 2554-2563.	0.5	1
117	When pigs fly. American Journal of Transplantation, 2022, , .	2.6	1
118	Solid organ transplantation at the National Institutes of Health: development of a research-based transplantation practice. Clinical Transplants, 2005, , 131-44.	0.2	1
119	Promise of costimulatory pathway modifying reagents for transplantation. Current Opinion in Organ Transplantation, 2000, 5, 90-95.	0.8	0
120	Convergent theories of transplantation tolerance. Current Opinion in Organ Transplantation, 2000, 5, 81-82.	0.8	0
121	Nitrite, a hypoxia selective nitric oxide donor, limits renal ischemia-reperfusion injury in non-human primates. Journal of the American College of Surgeons, 2006, 203, S31.	0.2	0
122	A novel calcineurin inhibitor– and sirolimus-free anti-LFA-1-based therapy enhances allogeneic islet survival and function in nonhuman primates. Journal of the American College of Surgeons, 2009, 209, S56.	0.2	0
123	New in AJT. American Journal of Transplantation, 2011, 11, 5-5.	2.6	0
124	Transplant Clinic Management., 2014, , 1518-1532.		0
125	Abdominal Solid Organ Transplantation Fellowship Training. , 2014, , 1562-1565.		0
126	Medical Solid Organ Transplant Fellowship Training. , 2014, , 1566-1571.		0

#	Article	IF	CITATIONS
127	Administration of Organ Procurement and Allocation. , 2014, , 251-263.		O
128	Toll-Like Receptor Signaling as a Prognostic Tool in Trauma Patients. Journal of the American College of Surgeons, 2016, 223, S159-S160.	0.2	0
129	Liver and pancreas transplantation immunobiology. , 2017, , 1726-1736.e3.		O
130	Antilymphocyte Globulin, Monoclonal Antibodies, and Fusion Proteins., 2020,, 283-312.		0
131	The Legacy of Joseph A. Moylan, M.D.: "lt's About Everyone Else― Annals of Surgery Open, 2021, 2, e051.	0.7	O
132	Association of a Network of Immunologic Response and Clinical Features With the Functional Recovery From Crotalinae Snakebite Envenoming. Frontiers in Immunology, 2021, 12, 628113.	2.2	0
133	Ageâ€related effects on thymic output and homeostatic T cell expansion following depletional induction in renal transplant recipients. American Journal of Transplantation, 2021, 21, 3163-3174.	2.6	o
134	Visual enhancement of laparoscopic nephrectomies using the 3-CCD camera. , 2006, , .		0
135	Translational Research in Composite Tissue Allotransplantation. , 2008, , 43-54.		O
136	Immunology of Transplantation. , 2008, , 1705-1736.		0
137	Liver and pancreas transplantation immunobiology. , 2012, , 1652-1661.e3.		O
138	CLONING OF PORCINE CD80 AND CHARACTERIZATION OF HUMAN T CELL COSTIMULATORY ACTIVITY. Transplantation, 1999, 67, S222.	0.5	0
139	RHESUS RENAL ALLOGRAFTS CONTAIN NON-DESTRUCTIVE ACTIVATED LYMPHOCYTIC INFILTRATES FOLLOWING ANTI-CD154 THERAPY Transplantation, 1999, 67, S63.	0.5	0
140	LONG-TERM INTRAHEPATIC ISLET ALLOGRAFT SURVIVAL IN NON-HUMAN PRIMATES TREATED WITH ANTI-CD154 MONOTHERAPY. Transplantation, 1999, 67, S550.	0.5	0