Mohammad Jalal Zohuriaan-Mehr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/814071/publications.pdf Version: 2024-02-01

Mohammad Jalal

#	Article	IF	CITATIONS
1	Nitrate removal from aqueous solutions by adsorption onto hydrogelâ€rice husk biochar composite. Water Environment Research, 2020, 92, 934-947.	1.3	35
2	Self-healing Diels–Alder engineered thermosets. , 2020, , 209-233.		4
3	Bio-resourced furan resin as a sustainable alternative to petroleum-based phenolic resin for making GFR polymer composites. Iranian Polymer Journal (English Edition), 2020, 29, 287-299.	1.3	14
4	Making vinyl ester resin greener: Succinic acid–glycerolâ€derived reactive diluent as an alternative to styrene. Journal of Applied Polymer Science, 2020, 137, 49144.	1.3	5
5	Epoxidized and Cyclocarbonated Star-Shaped Macromolecules as Bio-Based Internal and External Crosslinkers for Superabsorbent Polymer Hydrogels. Journal of Polymers and the Environment, 2020, 28, 1684-1695.	2.4	9
6	Non-isocyanate polyurethane thermoset based on a bio-resourced star-shaped epoxy macromonomer in comparison with a cyclocarbonate fossil-based epoxy resin: A preliminary study on thermo-mechanical and antibacterial properties. Journal of CO2 Utilization, 2019, 34, 558-567.	3.3	29
7	Poly(furfuryl alcohol) bioresin-modified LY5210 epoxy thermosets. Journal of Polymer Research, 2019, 26, 1.	1.2	4
8	Bio-based thermoset alloys from epoxy acrylate, sesame oil- and castor oil-derived resins: Renewable alternatives to vinyl ester and unsaturated polyester resins. Polymers From Renewable Resources, 2019, 10, 27-44.	0.8	13
9	Epoxy resin modification by reactive bio-based furan derivatives: Curing kinetics and mechanical properties. Thermochimica Acta, 2019, 673, 147-157.	1.2	46
10	Linseed oilâ€based reactive diluents preparation to improve tetraâ€functional epoxy resin properties. Polymers for Advanced Technologies, 2019, 30, 2361-2369.	1.6	11
11	Selfâ€healing semiâ€IPN materials from epoxy resin by solventâ€free furan–maleimide Diels–Alder polymerization. Journal of Applied Polymer Science, 2019, 136, 48015.	1.3	29
12	Superabsorbent polymers achieved by surface cross linking of poly(sodium acrylate) using microwave method. Iranian Polymer Journal (English Edition), 2019, 28, 539-548.	1.3	21
13	"Click―on SAP: Superabsorbent polymer surface modification via CuAAC reaction toward antibacterial activity and improved swollen gel strength. Applied Surface Science, 2019, 487, 1131-1144.	3.1	17
14	Cure kinetics of modified lignosulfonate/epoxy blends. Thermochimica Acta, 2019, 675, 18-28.	1.2	11
15	Preparation of poly (urea-formaldehyde) microcapsules for use in capsular adhesive. Journal of Polymer Research, 2019, 26, 1.	1.2	2
16	Glycerolâ€lactic acid starâ€shaped oligomers as efficient biobased surface modifiers for improving superabsorbent polymer hydrogels. Polymers for Advanced Technologies, 2019, 30, 390-399.	1.6	26
17	Biobased Dielsâ€Alder Engineered Network from Furfuryl Alcohol and Epoxy Resin: Preparation and Mechanoâ€Physical Characteristics. ChemistrySelect, 2018, 3, 40-46	0.7	22
18	Tannic acid derived non-isocyanate polyurethane networks: Synthesis, curing kinetics, antioxidizing activity and cell viability. Thermochimica Acta, 2018, 664, 64-72.	1.2	37

MOHAMMAD JALAL

#	Article	IF	CITATIONS
19	Cyclocarbonated lignosulfonate as a bio-resourced reactive reinforcing agent for epoxy biocomposite: From natural waste to value-added bio-additive. Journal of CO2 Utilization, 2018, 24, 50-58.	3.3	27
20	Toward poly(furfuryl alcohol) applications diversification: Novel selfâ€healing network and toughening epoxy–novolac resin. Journal of Applied Polymer Science, 2018, 135, 45921.	1.3	31
21	Transamidation: A feasible approach of surface modification to improve absorbency under load of agricultural superabsorbent materials. Journal of Materials Research, 2018, 33, 2327-2335.	1.2	10
22	Bio-based thermosetting epoxy foam: Tannic acid valorization toward dye-decontaminating and thermo-protecting applications. Journal of Hazardous Materials, 2018, 357, 30-39.	6.5	27
23	Hydroxymethyl furfural-modified urea–formaldehyde resin: synthesis and properties. European Journal of Wood and Wood Products, 2017, 75, 71-80.	1.3	22
24	Epoxy matrix toughness improvement via reactive bio-resin alloying. High Performance Polymers, 2017, 29, 772-784.	0.8	15
25	Bio-based thermo-healable non-isocyanate polyurethane DA network in comparison with its epoxy counterpart. Journal of CO2 Utilization, 2017, 18, 294-302.	3.3	38
26	An efficient fully bioâ€based reactive diluent for epoxy thermosets: 2â€[(Oxiranâ€2â€ylmethoxy) methyl] furan versus a petroleumâ€based counterpart. Journal of Applied Polymer Science, 2017, 134, .	1.3	23
27	Fine tuning of SAP properties via epoxy-silane surface modification. Polymers for Advanced Technologies, 2017, 28, 1132-1147.	1.6	27
28	Rapid preparation of epoxy acrylate-clay nanocomposite: Simultaneous acrylation/nanoclay dispersion under ultrasonication. Progress in Organic Coatings, 2017, 108, 44-50.	1.9	12
29	Kinetics of curing and thermo-degradation, antioxidizing activity, and cell viability of a tannic acid based epoxy resin: From natural waste to value-added biomaterial. Thermochimica Acta, 2017, 655, 21-33.	1.2	22
30	HMF synthesis in aqueous and organic media under ultrasonication, microwave irradiation and conventional heating. Korean Journal of Chemical Engineering, 2016, 33, 1964-1970.	1.2	25
31	Simple and efficient approach for recycling of fine acrylic-based superabsorbent waste. Polymer Bulletin, 2016, 73, 1119-1133.	1.7	16
32	Tetra-functional epoxy-acrylate as crosslinker for UV curable resins: Synthesis, spectral, and thermo-mechanical studies. Progress in Organic Coatings, 2015, 89, 231-239.	1.9	37
33	Improvement of the mechanical properties of carbon black-filled ethylene propylene diene monomer using a metallic acrylate salt as filler. Journal of Composite Materials, 2014, 48, 471-481.	1.2	6
34	Preparation and characterization of linseed oil-filled urea–formaldehyde microcapsules and their effect on mechanical properties of an epoxy-based coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457, 16-26.	2.3	80
35	Investigation of viscoelastic and thermal properties of cyclic carbonate bearing copolymers. Polymer Science - Series B, 2013, 55, 327-335.	0.3	5
36	Copolymers of glycidyl methacrylate and octadecyl acrylate: synthesis, characterization, swelling properties, and reactivity ratios. Designed Monomers and Polymers, 2013, 16, 79-88.	0.7	33

MOHAMMAD JALAL

#	Article	IF	CITATIONS
37	Glycidyl Methacrylate Copolymers Modified with CO ₂ . Soft Materials, 2013, 11, 430-439.	0.8	6
38	Super alcohol-absorbent gels of sulfonic acid-contained poly(acrylic acid). Journal of Polymer Research, 2011, 18, 449-458.	1.2	24
39	Effect of long-chain monoacrylate on the residual monomer content, swelling and thermomechanical properties of SAP hydrogels. Journal of Polymer Research, 2011, 18, 1863-1870.	1.2	5
40	Superabsorbent hydrogel composites and nanocomposites: A review. Polymer Composites, 2011, 32, 277-289.	2.3	368
41	Poly(acrylic acid–sodium styrene sulfonate) organogels: Preparation, characterization, and alcohol superabsorbency. Journal of Applied Polymer Science, 2011, 119, 2759-2769.	1.3	28
42	Nanocomposite superâ€swelling hydrogels with nanorod bentonite. Journal of Applied Polymer Science, 2011, 120, 3453-3459.	1.3	25
43	Minimization of residual monomer content of superabsorbent hydrogels via alteration of initiating system. Journal of Applied Polymer Science, 2011, 120, 2716-2723.	1.3	16
44	Alcohophilic gels: Polymeric organogels composing carboxylic and sulfonic acid groups. Journal of Applied Polymer Science, 2011, 120, 3350-3356.	1.3	16
45	Thermo-hydrolytic stability of swelling capacity of superabsorbing composite hydrogels based on AMPS and acrylamide. Journal of Polymer Research, 2010, 17, 151-159.	1.2	29
46	Solvent-, ion- and pH-specific swelling of poly(2-acrylamido-2-methylpropane sulfonic acid) superabsorbing gels. Journal of Polymer Research, 2010, 17, 203-212.	1.2	85
47	Extraordinary swelling behavior of poly(AMPS) organogel in solvent/DMSO binary mixed media. Journal of Applied Polymer Science, 2010, 117, 1127-1136.	1.3	18
48	Effects of structural variables on AUL and rheological behavior of SAP gels. Journal of Applied Polymer Science, 2009, 113, 3676-3686.	1.3	42
49	Residual monomer in superabsorbent polymers: Effects of the initiating system. Journal of Applied Polymer Science, 2009, 114, 2533-2540.	1.3	14
50	Antipolyelectrolyte superabsorbing nanocomposites: Synthesis and properties. Journal of Applied Polymer Science, 2009, 114, 3542-3547.	1.3	17
51	Chitosanâ€modified nanoclay–poly(AMPS) nanocomposite hydrogels with improved gel strength. Polymer International, 2009, 58, 1252-1259.	1.6	56
52	Spectral and chemical determination of copolymer composition of poly (butyl acrylate-co-glycidyl) Tj ETQq0 0 0	rgBT /Ove 2.3	rlock 10 Tf 50
53	Tragacanth gum-graft-polyacrylonitrile: synthesis, characterization and hydrolysis. Journal of Polymer Research, 2008, 15, 173-180.	1.2	68

54 Undesirable effects of heating on hydrogels. Journal of Applied Polymer Science, 2008, 110, 3420-3430. 1.3 42

MOHAMMAD JALAL

#	Article	IF	CITATIONS
55	Thiolated chitosan coated poly hydroxyethyl methacrylate nanoparticles: Synthesis and characterization. Carbohydrate Polymers, 2008, 74, 59-67.	5.1	40
56	Ionically cross-linked carrageenan-alginate hydrogel beads. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 47-59.	1.9	90
57	Synthesis and Properties of Highly Swelling PAAm/Chitosan Semiâ€IPN Hydrogels. Macromolecular Symposia, 2008, 274, 171-176.	0.4	15
58	pH-Sensitive IPN Hydrogel Beads of Carrageenan-Alginate for Controlled Drug Delivery. Journal of Bioactive and Compatible Polymers, 2007, 22, 342-356.	0.8	96
59	Carrageenan-g-Poly(sodium Acrylate)/Kaolin Superabsorbent Hydrogel Composites: Synthesis, Characterisation and Swelling Behaviour. Polymers and Polymer Composites, 2007, 15, 43-51.	1.0	11
60	Rheological determination of the swollen gel strength of superabsorbent polymer hydrogels. Polymer Testing, 2006, 25, 470-474.	2.3	186
61	Gum arabic–acrylic superabsorbing hydrogel hybrids: Studies on swelling rate and environmental responsiveness. Journal of Applied Polymer Science, 2006, 102, 5667-5674.	1.3	57
62	Optimized HPLC determination of residual monomer in hygienic SAP hydrogels. Polymer Testing, 2005, 24, 825-828.	2.3	39
63	Novel sulfobetaine-sulfonic acid-contained superswelling hydrogels. Polymers for Advanced Technologies, 2005, 16, 659-666.	1.6	64
64	Modified carrageenan. 2. Hydrolyzed crosslinked κ-carrageenan-g-PAAm as a novel smart superabsorbent hydrogel with low salt sensitivity. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 1499-1511.	1.9	40
65	Porous Superabsorbent Hydrogel Composites: Synthesis, Morphology and Swelling Rate. Macromolecular Materials and Engineering, 2004, 289, 653-661.	1.7	132
66	Diethylmethyl chitosan as an antimicrobial agent: Synthesis, characterization and antibacterial effects. European Polymer Journal, 2004, 40, 1355-1361.	2.6	179
67	Modified CMC. 2. Novel carboxymethylcellulose-based poly(amidoxime) chelating resin with high metal sorption capacity. Reactive and Functional Polymers, 2004, 61, 23-31.	2.0	37
68	Polymerization of sodium acrylate in inverse-suspension stabilized by sorbitan fatty esters. European Polymer Journal, 2003, 39, 1013-1018.	2.6	31
69	Synthesis of fast-swelling superabsorbent hydrogels: effect of crosslinker type and concentration on porosity and absorption rate. European Polymer Journal, 2003, 39, 1341-1348.	2.6	357
70	Novel approach to highly porous superabsorbent hydrogels: synergistic effect of porogens on porosity and swelling rate. Polymer International, 2003, 52, 1158-1164.	1.6	100
71	Superabsorbent hydrogel composites. Polymers for Advanced Technologies, 2003, 14, 438-444.	1.6	163
72	DSC studies on synthesis of superabsorbent hydrogels. Polymer, 2002, 43, 269-277.	1.8	32