
José Luis GonzÃ;lez-Carrasco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8140698/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	New approach to improve polymer-Mg interface in biodegradable PLA/Mg composites through particle surface modification. Surface and Coatings Technology, 2020, 383, 125285.	2.2	28
2	In vitro degradation of biodegradable polylactic acid/Mg composites: Influence of nature and crystalline degree of the polymeric matrix. Materialia, 2019, 6, 100270.	1.3	21
3	Biodegradable Bi-layered coating on polymeric orthopaedic implants for controlled release of drugs. Materials Letters, 2014, 132, 193-195.	1.3	20
4	In vitro degradation of a biodegradable polylactic acid/magnesium composite as potential bone augmentation material in the presence of titanium and PEEK dental implants. Dental Materials, 2018, 34, 1492-1500.	1.6	19
5	Decrease of Staphylococcal adhesion on surgical stainless steel after Si ion implantation. Applied Surface Science, 2014, 310, 36-41.	3.1	15
6	On the interactions of human bone cells with Ti6Al4V thermally oxidized by means of laser shock processing. Biomedical Materials (Bristol), 2016, 11, 015009.	1.7	15
7	Comparison of Ductile-to-Brittle Transition Behavior in Two Similar Ferritic Oxide Dispersion Strengthened Alloys. Materials, 2016, 9, 637.	1.3	13
8	Characterization of laser peening-induced effects on a biomedical Ti6Al4V alloy by thermoelectric means. Optical Engineering, 2014, 53, 122502.	0.5	7
9	On the evaluation of global laser-induced effects on a medical Ti-6Al-4Valloy by non-destructive techniques. Nondestructive Testing and Evaluation, 2019, 34, 193-204.	1.1	5
10	Does magnesium compromise the high temperature processability of novel biodegradable and bioresorbables PLLA/Mg composites?. Revista De Metalurgia, 2014, 50, e011.	0.1	4
11	Production of MA956 Alloy Reinforced Aluminum Matrix Composites by Mechanical Alloying. Materials Research, 2015, 18, 48-54.	0.6	3
12	Effect of Thermal Processing on the Dynamic/Isothermal Crystallization and Cytocompatibility of Polylactic Acid for Biomedical Applications. Macromolecular Chemistry and Physics, 2021, 222, 2100274.	1.1	3
13	Laser Shock Processing as an Advanced Technique for the Surface and Mechanical Resistance Properties Modification of Bioabsorbable Magnesium Alloys. Materials Science Forum, 2018, 941, 2489-2494.	0.3	0

14 Superficial modification of a Ti-6Al-4V alloy by laser peening. , 2017, , .

0