Richard Drummond-Brydson

List of Publications by Citations

Source:

https://exaly.com/author-pdf/8140354/richard-drummond-brydson-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

183 papers

6,589 citations

46 h-index

72 g-index

183 ext. papers

7,098 ext. citations

avg, IF

5.54 L-index

#	Paper	IF	Citations
183	Electron energy loss and X-ray absorption spectroscopy of rutile and anatase: a test of structural sensitivity. <i>Journal of Physics Condensed Matter</i> , 1989 , 1, 797-812	1.8	265
182	Potassium catalysis in the pyrolysis behaviour of short rotation willow coppice. Fuel, 2007, 86, 2389-240) 2 7.1	254
181	Location of Aluminum in Substituted Calcium Silicate Hydrate (C-S-H) Gels as Determined by 29Si and 27Al NMR and EELS. <i>Journal of the American Ceramic Society</i> , 1993 , 76, 2285-2288	3.8	221
180	Composition and microstructure of 20-year-old ordinary Portland cement ground granulated blast-furnace slag blends containing 0 to 100% slag. Cement and Concrete Research, 2010, 40, 971-983	10.3	200
179	Tuning nitrogen functionalities in catalytically grown nitrogen-containing carbon nanotubes. <i>Carbon</i> , 2008 , 46, 138-148	10.4	185
178	Electron-energy-loss near-edge structures in the oxygen K-edge spectra of transition-metal oxides. <i>Physical Review B</i> , 1993 , 47, 13763-13768	3.3	163
177	Electron energy-loss near-edge structure a tool for the investigation of electronic structure on the nanometre scale. <i>Journal of Microscopy</i> , 2001 , 203, 135-75	1.9	155
176	Plant-driven fungal weathering: Early stages of mineral alteration at the nanometer scale. <i>Geology</i> , 2009 , 37, 615-618	5	146
175	In situ fabrication of Al3Ti particle reinforced aluminium alloy metalThatrix composites. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2004 , 364, 339-345	5.3	141
174	Microstructural and crystallographical study of carbides in 30wt.%Cr cast irons. <i>Acta Materialia</i> , 2005 , 53, 4143-4154	8.4	122
173	Near-infrared fluorescent ribonuclease-A-encapsulated gold nanoclusters: preparation, characterization, cancer targeting and imaging. <i>Nanoscale</i> , 2013 , 5, 1009-17	7.7	117
172	Designed Self-Assembled Esheet Peptide Fibrils as Templates for Silica Nanotubes. <i>Advanced Functional Materials</i> , 2004 , 14, 31-37	15.6	110
171	Quantitative analysis of the microstructure of interfaces in steel reinforced concrete. <i>Cement and Concrete Research</i> , 2007 , 37, 1613-1623	10.3	99
170	Highly luminescent and nontoxic amine-capped nanoparticles from porous silicon: synthesis and their use in biomedical imaging. <i>ACS Applied Materials & amp; Interfaces</i> , 2012 , 4, 3285-92	9.5	96
169	Electron energy-loss spectroscopy (EELS) and the electronic structure of titanium dioxide. <i>Solid State Communications</i> , 1987 , 64, 609-612	1.6	87
168	Sulphur poisoning and regeneration of precious metal catalysed methane combustion. <i>Catalysis Today</i> , 2003 , 81, 589-601	5.3	86
167	Composition, morphology and nanostructure of CBH in 70% white Portland cementB0% fly ash blends hydrated at 55 °C Cement and Concrete Research, 2010 , 40, 1350-1359	10.3	79

(2005-1994)

166	Investigations of the chemistry and bonding at niobiumsapphire interfaces. <i>Journal of Materials Research</i> , 1994 , 9, 2574-2583	2.5	79
165	A convenient, general synthesis of carbide nanofibres via templated reactions on carbon nanotubes in molten salt media. <i>Carbon</i> , 2009 , 47, 201-208	10.4	78
164	Fe-N-Doped Mesoporous Carbon with Dual Active Sites Loaded on Reduced Graphene Oxides for Efficient Oxygen Reduction Catalysts. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 2423-2429	9.5	77
163	Preparation of a titanium carbide coating on carbon fibre using a molten salt method. <i>Carbon</i> , 2008 , 46, 305-309	10.4	76
162	Investigating the structure of non-graphitising carbons using electron energy loss spectroscopy in the transmission electron microscope. <i>Carbon</i> , 2011 , 49, 5049-5063	10.4	74
161	Theoretical site- and symmetry-resolved density of states and experimental EELS near-edge spectra of AlB2 and TiB2. <i>Physical Review B</i> , 2000 , 61, 1786-1794	3.3	74
160	Effect of mill type on the size reduction and phase transformation of gamma alumina. <i>Chemical Engineering Science</i> , 2015 , 134, 774-783	4.4	73
159	Determination of coordinations and coordination-specific site occupancies by electron energy-loss spectroscopy: An investigation of boronbxygen compounds. <i>Ultramicroscopy</i> , 1993 , 49, 198-209	3.1	73
158	Electron energy-loss near-edge structures at the oxygen K edges of titanium(IV) oxygen compounds. <i>Journal of Physics Condensed Matter</i> , 1992 , 4, 3429-3437	1.8	68
157	Electronic Structure Modification of Ion Implanted Graphene: The Spectroscopic Signatures of pand n-Type Doping. <i>ACS Nano</i> , 2015 , 9, 11398-407	16.7	64
156	Enhanced photocatalytic hydrogen generation using polymorphic macroporous TaON. <i>Advanced Materials</i> , 2012 , 24, 3406-9	24	64
155	Nearly monodispersed carbon coated iron nanoparticles for the catalytic growth of nanotubes/nanofibres. <i>Diamond and Related Materials</i> , 2004 , 13, 362-370	3.5	63
154	Quantitative valence plasmon mapping in the TEM: viewing physical properties at the nanoscale. <i>Ultramicroscopy</i> , 2003 , 96, 547-58	3.1	63
153	Systematic investigation of the physicochemical factors that contribute to the toxicity of ZnO nanoparticles. <i>Chemical Research in Toxicology</i> , 2014 , 27, 558-67	4	62
152	Electron-energy-loss spectroscopy studies of Cu-EAl2O3 interfaces grown by molecular beam epitaxy. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 1998 , 78, 439-465		62
151	Atomic structure of ultrafine catalyst particles resolved with a 200-keV transmission electron microscope. <i>Nature</i> , 1986 , 323, 428-431	50.4	59
150	Hydrogarnet: a host phase for Cr(VI) in chromite ore processing residue (COPR) and other high pH wastes. <i>Environmental Science & Environmental Scienc</i>	10.3	58
149	Determination of the local chemistry of iron in inorganic and organic materials. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2005 , 143, 173-187	1.7	58

148	Experimental and theoretical evidence for the magic angle in transmission electron energy loss spectroscopy. <i>Ultramicroscopy</i> , 2003 , 96, 523-34	3.1	57
147	Parallel electron energy-loss spectroscopy (PEELS) study of B in minerals; the electron energy-loss near-edge structure (ELNES) of the B K edge. <i>American Mineralogist</i> , 1995 , 80, 1132-1144	2.9	56
146	Quantification of nanoparticle dose and vesicular inheritance in proliferating cells. <i>ACS Nano</i> , 2013 , 7, 6129-37	16.7	52
145	An analysis of the microstructure and interfacial chemistry of steel@namel interface. <i>Thin Solid Films</i> , 2003 , 443, 33-45	2.2	51
144	Origin of significant visible-light absorption properties of Mn-doped TiO2 thin films. <i>Acta Materialia</i> , 2012 , 60, 1974-1985	8.4	49
143	An electron microscopic study of spheroidal graphite nodules formed in a medium-carbon steel by annealing. <i>Acta Materialia</i> , 2007 , 55, 2919-2927	8.4	49
142	Evidence for the solubility of boron in graphite by electron energy loss spectroscopy. <i>Carbon</i> , 2000 , 38, 547-554	10.4	49
141	Bonding in alpha-quartz (SiO2): A view of the unoccupied states. <i>American Mineralogist</i> , 2000 , 85, 732-7	3.8 9	49
140	Synthesis, formation and Characterisation of MgNb2O6 Powder in a Columbite-like Phase. <i>Journal of the European Ceramic Society</i> , 1999 , 19, 355-362	6	49
139	Microstructural and microtextural analysis of InterPulse GTCAW welds in Cp-Ti and TiBAlaV. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7694-7705	5.3	46
138	TEM characterisation of PZT films prepared by a diol route on platinised silicon substrates. <i>Journal of the European Ceramic Society</i> , 2000 , 20, 1277-1288	6	46
137	Electron irradiation of nuclear graphite studied by transmission electron microscopy and electron energy loss spectroscopy. <i>Carbon</i> , 2015 , 83, 106-117	10.4	45
136	Electron-beam-induced reduction of Fe3+ in iron phosphate dihydrate, ferrihydrite, haemosiderin and ferritin as revealed by electron energy-loss spectroscopy. <i>Ultramicroscopy</i> , 2010 , 110, 1020-1032	3.1	44
135	Synthesis of analytical and high-resolution transmission electron microscopy to determine the interface structure of Cu/Al2O3. <i>Ultramicroscopy</i> , 1997 , 67, 207-217	3.1	44
134	Carbon nanopowders from the continuous-wave CO2 laser-induced pyrolysis of ethylene. <i>Carbon</i> , 2003 , 41, 2913-2921	10.4	44
133	Composition, morphology and nanostructure of CBH in white Portland cement pastes hydrated at 55 If C. Cement and Concrete Research, 2007, 37, 1571-1582	10.3	42
132	Dissecting Multivalent Lectin-Carbohydrate Recognition Using Polyvalent Multifunctional Glycan-Quantum Dots. <i>Journal of the American Chemical Society</i> , 2017 , 139, 11833-11844	16.4	41
131	Spatially resolved electron energy-loss studies of metalderamic interfaces in transition metal/alumina cermets. <i>Journal of Microscopy</i> , 1995 , 177, 369-386	1.9	41

130	L2,3edges of tetrahedrally coordinated d0transition-metal oxyanions XO4n <i>Journal of Physics Condensed Matter</i> , 1993 , 5, 9379-9392	1.8	41
129	Correlations among the mineralogical and physical properties of halloysite nanotubes (HNTs). <i>Clay Minerals</i> , 2016 , 51, 325-350	1.3	40
128	A Study of Commercial Nanoparticulate EAl2O3 Catalyst Supports. ChemCatChem, 2013, 5, 2695-2706	5.2	38
127	Multiple scattering theory applied to ELNES of interfaces. <i>Journal Physics D: Applied Physics</i> , 1996 , 29, 1699-1708	3	37
126	Sub-Nanometer Thick Gold Nanosheets as Highly Efficient Catalysts. <i>Advanced Science</i> , 2019 , 6, 190091	113.6	36
125	Synthesis and characterization of mixed phase anatase TiO2 and sodium-doped TiO2(B) thin films by low pressure chemical vapour deposition (LPCVD). <i>RSC Advances</i> , 2014 , 4, 48507-48515	3.7	35
124	Characterization of dentine structure in three dimensions using FIB-SEM. <i>Journal of Microscopy</i> , 2010 , 240, 1-5	1.9	35
123	Universal synthesis method for mixed phase TiO2(B)/anatase TiO2 thin films on substrates via a modified low pressure chemical vapour deposition (LPCVD) route. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 5685-5699	13	35
122	Electrochemical modeling of the silica nanoparticle-biomembrane interaction. <i>Langmuir</i> , 2012 , 28, 1246	5-545	34
121	A substoichiometric tungsten oxide catalyst provides a sustainable and efficient counter electrode for dye-sensitized solar cells. <i>Electrochimica Acta</i> , 2014 , 145, 27-33	6.7	33
120	Electron energy loss near edge structure on the nitrogen K-edge in vanadium nitrides. <i>Journal of Microscopy</i> , 2001 , 204, 166-71	1.9	32
119	Oxygen K near-edge spectra of amorphous silicon suboxides. <i>Journal of Microscopy</i> , 1995 , 180, 307-312	1.9	32
118	Effects of in situ formation of TiB2 particles on age hardening behavior of Cull wt% Till wt% TiB2. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing , 2013, 577, 16-22	5.3	31
117	Effect of nanosized carbon black on the morphology, transport, and mechanical properties of rubbery epoxy and silicone composites. <i>Journal of Applied Polymer Science</i> , 2012 , 126, 641-652	2.9	31
116	On the nature of cracks and voids in nuclear graphite. <i>Carbon</i> , 2016 , 103, 45-55	10.4	31
115	Deactivation and regeneration of Pt/Ealumina and Pt/ceria lumina catalysts for methane combustion in the presence of H2S. <i>Catalysis Today</i> , 2003 , 81, 659-671	5.3	30
114	The effects of a nickel oxide precoat on the gas bubble structures and fish-scaling resistance in vitreous enamels. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2004 , 366, 254-261	5.3	29
113	Low-Temperature Preparation of Single Crystal Titanium Carbide Nanofibers in Molten Salts. Crystal Growth and Design, 2011, 11, 3122-3129	3.5	28

112	investigating the structure of biomass-derived non-graphitizing mesoporous carbons by electron energy loss spectroscopy in the transmission electron microscope and X-ray photoelectron spectroscopy. <i>Carbon</i> , 2014 , 67, 514-524	10.4	27
111	Smart acquisition EELS. <i>Ultramicroscopy</i> , 2010 , 110, 998-1003	3.1	27
110	Formation of Lead Zirconate Titanate Powders by Spray Pyrolysis. <i>Journal of the American Ceramic Society</i> , 2003 , 86, 1474-1480	3.8	27
109	Nanoparticle vesicle encoding for imaging and tracking cell populations. <i>Nature Methods</i> , 2014 , 11, 117	7 <u>281</u> 6	26
108	Dual lanthanide role in the designed synthesis of hollow metal coordination (Prussian Blue analogue) nanocages with large internal cavity and mesoporous cage. <i>Nanoscale</i> , 2011 , 3, 3685-94	7.7	26
107	Evidence for the dissolution of molybdenum during tribocorrosion of CoCrMo hip implants in the presence of serum protein. <i>Acta Biomaterialia</i> , 2016 , 45, 410-418	10.8	26
106	The removal of encapsulated catalyst particles from carbon nanotubes using molten salts. <i>Carbon</i> , 2006 , 44, 1699-1705	10.4	25
105	Modelling the bonding at metal-ceramic interfaces using PEELS in the STEM. <i>Ultramicroscopy</i> , 1995 , 59, 81-92	3.1	25
104	Peptide aerogels comprising self-assembling nanofibrils. <i>Micro and Nano Letters</i> , 2007 , 2, 24	0.9	24
103	Creep Viscosity of Vitreous China. <i>Journal of the American Ceramic Society</i> , 2004 , 87, 923-928	3.8	24
102	High temperature ceramics for use in membrane reactors: the development of microporosity during the pyrolysis of polycarbosilanes. <i>Journal of Materials Chemistry</i> , 2002 , 12, 3754-3760		24
101	Microscopy of nanoparticulate dispersions. <i>Journal of Microscopy</i> , 2015 , 260, 238-47	1.9	23
100	A systematic approach to choosing parameters for modelling fine structure in electron energy-loss spectroscopy. <i>Ultramicroscopy</i> , 2009 , 109, 1374-88	3.1	23
99	Further evidence for core-hole effects in the near-edge structures of light-element K-edges. <i>Chemical Physics Letters</i> , 1988 , 149, 343-347	2.5	23
98	Effect of starting microstructure upon the nucleation sites and distribution of graphite particles during a graphitising anneal of an experimental medium-carbon machining steel. <i>Materials Characterization</i> , 2015 , 106, 86-92	3.9	22
97	STEM mode in the SEM: a practical tool for nanotoxicology. <i>Nanotoxicology</i> , 2011 , 5, 215-27	5.3	22
96	Study on the magnetorheological properties of maghemite-kerosene ferrofluid. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 4273-8	1.3	22
95	A comparison of the microstructure and mechanical properties of two liquid phase sintered aluminas containing different molar ratios of calcialilica sintering additives. <i>Journal of the European Ceramic Society</i> , 2004 , 24, 3453-3463	6	22

94	Asymmetric ineltingland freezinglanetics of the magnetostructural phase transition in B2-ordered FeRh epilayers. <i>Applied Physics Letters</i> , 2014 , 104, 232407	3.4	21
93	A study of charge transfer in vapour deposited Mg\(\mathbb{U}\) crystalline alloys via changes in Auger parameters. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 1998 , 77, 1067-1079		21
92	Application of Nomarski differential interference contrast microscopy to highlight the prior austenite grain boundaries revealed by thermal etching. <i>Materials Characterization</i> , 2010 , 61, 584-588	3.9	20
91	Development of new carbon honeycomb structures from cellulose and pitch. <i>Carbon</i> , 2002 , 40, 541-550	10.4	20
90	Characterization of sub-stoichiometric tungsten trioxide (WO3N) using impedance spectroscopy. Sensors and Actuators A: Physical, 2005, 118, 322-331	3.9	20
89	Development of MgN alloys by physical vapour deposition Part 1 Bulk and surface characterisation. <i>Materials Science and Technology</i> , 1998 , 14, 689-698	1.5	20
88	Microwave-Induced-Plasma-Assisted Synthesis of Ternary Titanate and Niobate Phases. <i>Advanced Materials</i> , 2005 , 17, 2474-2477	24	19
87	Influence of CaOBiO2 ratio on the chemistry of intergranular films in liquid-phase sintered alumina and implications for rate of erosive wear. <i>Journal of Materials Research</i> , 2001 , 16, 652-665	2.5	19
86	Can fresnoite (Ba2TiSi2O8) incorporate Ti3+ when crystallizing from highly reduced melts?. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 2001 , 81, 825-839		19
85	Carbon K-shell near-edge structure calculations for graphite using the multiple-scattering approach. <i>Journal of Physics Condensed Matter</i> , 1996 , 8, 3835-3841	1.8	19
84	Pore confinement effects and stabilization of carbon nitride oligomers in macroporous silica for photocatalytic hydrogen production. <i>Carbon</i> , 2016 , 106, 320-329	10.4	19
83	Significance of particle size and charge capacity in TiO2 nanoparticle-lipid interactions. <i>Journal of Colloid and Interface Science</i> , 2016 , 473, 75-83	9.3	19
82	Enhancement of hydrogen production using photoactive nanoparticles on a photochemically inert photonic macroporous support. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 493-9	3.6	18
81	Structural analysis of carbon nanofibres grown by the floating catalyst method. Carbon, 2002, 40, 1089-	1:160.09	18
80	The perovskite system La(Mg2/3Nb1/3)O3. Journal of the European Ceramic Society, 2000, 20, 2315-232	4 6	18
79	Synthesis of inorganic fullerene (MS2, M = Zr, Hf and W) phases using H2S and N2/H2microwave-induced plasmas. <i>Nanotechnology</i> , 2006 , 17, 1245-1250	3.4	17
78	Qualitative interpretation of electron energy-loss near-edge structure in natural zircon. <i>Journal of Physics Condensed Matter</i> , 1992 , 4, 8363-8374	1.8	17
77	Economical synthesis of nanocrystalline alumina using an environmentally low-cost binder. <i>Surface Science</i> , 2007 , 601, 2864-2867	1.8	16

76	Microstructure tress relationships in liquid-phase sintered alumina modified by the addition of 5wt.% of calcia dilica additives. <i>Acta Materialia</i> , 2006 , 54, 4853-4863	8.4	16
75	A brief review of quantitative aspects of electron energy loss spectroscopy and imaging. <i>Materials Science and Technology</i> , 2000 , 16, 1187-1198	1.5	16
74	Visualizing surface plasmons with photons, photoelectrons, and electrons. <i>Analyst, The</i> , 2016 , 141, 356	2 <i>-</i> 7 2	16
73	Microstructure analyses and thermoelectric properties of Ag1\(\text{Pb18Sb1+yTe20}. \) Journal of Solid State Chemistry, 2012 , 193, 58-63	3.3	15
72	Evidence for boron diffusion into sub-stoichiometric MgO (001) barriers in CoFeB/MgO-based magnetic tunnel junctions. <i>Journal of Applied Physics</i> , 2013 , 113, 163502	2.5	15
71	Quantitative analysis of image contrast in phase contrast STEM for low dose imaging. <i>Ultramicroscopy</i> , 2010 , 110, 1324-1331	3.1	15
70	Atomic-scale surface roughness of rutile and implications for organic molecule adsorption. <i>Langmuir</i> , 2013 , 29, 6876-83	4	14
69	Electron energy-loss spectroscopy (EELS) studies of an yttria stabilized TZP ceramic. <i>Journal of the European Ceramic Society</i> , 2004 , 24, 2023-2029	6	14
68	Development of MgIV alloys by physical vapour deposition Part 2 ICharacterisation of corrosion products formed in 3 vvt-%NaCI. <i>Materials Science and Technology</i> , 1998 , 14, 699-711	1.5	14
67	Probing the local structure and bonding at interfaces and defects using EELS in the TEM. <i>Journal of Microscopy</i> , 1995 , 180, 238-249	1.9	14
66	The effects of boron additions on the oxidation of Fe-Cr alloys in high-temperature steam: Analytical results and mechanisms. <i>Oxidation of Metals</i> , 1991 , 35, 375-395	1.6	14
65	Parallel electron energy loss spectroscopy study of al-substituted calcium silicate hydrate (C?S?H) phases present in hardened cement pastes. <i>Solid State Communications</i> , 1993 , 88, 183-187	1.6	14
64	A time-dependent atomistic reconstruction of severe irradiation damage and associated property changes in nuclear graphite. <i>Carbon</i> , 2017 , 120, 111-120	10.4	13
63	Energy of Step Defects on the TiO2 Rutile (110) Surface: An ab initio DFT Methodology. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 23766-23780	3.8	13
62	The effect of deliberate aluminium additions on the microstructure of rolled steel plate characterized using EBSD. <i>Materials Characterization</i> , 2010 , 61, 159-167	3.9	13
61	Characterizing the local nitrogen environment at platelets in type IaA/B diamond. <i>Journal of Microscopy</i> , 1998 , 189, 137-144	1.9	13
60	Properties of Lead Zirconate Titanate Thin Films Prepared Using a Triol Sol © el Route. <i>Journal of the American Ceramic Society</i> , 2003 , 86, 1560-1566	3.8	13
59	Micro to nanostructural observations in neutron irradiated nuclear graphites PCEA and PCIB. Journal of Nuclear Materials, 2017, 491, 221-231	3.3	12

58	Investigating the distribution and bonding of light elements alloyed in carbonaceous materials using EELS in the TEM/STEM. <i>Carbon</i> , 1998 , 36, 1139-1147	10.4	12
57	Quantifying the cellular uptake of semiconductor quantum dot nanoparticles by analytical electron microscopy. <i>Journal of Microscopy</i> , 2016 , 261, 167-76	1.9	11
56	Analytical Transmission Electron Microscopy. Reviews in Mineralogy and Geochemistry, 2014, 78, 219-26	9 _{7.1}	11
55	ZnO nanoparticle interactions with phospholipid monolayers. <i>Journal of Colloid and Interface Science</i> , 2013 , 404, 161-8	9.3	11
54	Organosilica Nanoshells with Thin Silica Cross-Linking by Miniemulsion Periphery Polymerization (MEPP). <i>Macromolecules</i> , 2010 , 43, 6343-6347	5.5	11
53	Development of physical vapour deposited MgIIr alloys Part 1 ICharacterisation of as deposited alloys. <i>Materials Science and Technology</i> , 1999 , 15, 1349-1357	1.5	11
52	Development of physical vapour deposited Mg@r alloys Part 2 ICharacterisation of corrosion products. <i>Materials Science and Technology</i> , 1999 , 15, 1359-1372	1.5	11
51	Bilayer graphene formed by passage of current through graphite: evidence for a three-dimensional structure. <i>Nanotechnology</i> , 2014 , 25, 465601	3.4	10
50	Investigation of Fe/MgO catalyst support precursors for the chemical vapour deposition growth of carbon nanotubes. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 5345-51	1.3	10
49	Electronic property investigations of single-walled carbon nanotube bundles in situ within a transmission electron microscope: an evaluation. <i>Journal of Microscopy</i> , 2008 , 231, 144-55	1.9	10
48	Quantification of absolute iron content in mineral cores of cytosolic ferritin molecules in human liver. <i>Materials Science and Technology</i> , 2008 , 24, 689-694	1.5	10
47	Thermal annealing of nuclear graphite during in-situ electron irradiation. <i>Carbon</i> , 2017 , 115, 659-664	10.4	9
46	Observation of thermally etched grain boundaries with the FIB/TEM technique. <i>Materials Characterization</i> , 2013 , 84, 28-33	3.9	9
45	Chromatic Aberration Correction: The Next Step in Electron Microscopy. <i>Advances in Imaging and Electron Physics</i> , 2011 , 165, 73-130	0.2	9
44	v: The Role of Ion Migration and Alloy Formation on the Stability of Core Shell Cocatalysts for Photoinduced Water Splitting. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 22758-22762	3.8	9
43	The development and stability of porosity formed during the pyrolysis of polyborodiphenylsiloxane. <i>Microporous and Mesoporous Materials</i> , 2007 , 99, 261-267	5.3	9
42	Particle Formation During Spray Pyrolysis of Lead Zirconate Titanate. <i>Journal of the American Ceramic Society</i> , 2005 , 88, 839-844	3.8	9
41	Synthesis, characterization and electrochemical performances of EFe2O3 cathode material for Li-ion batteries. <i>Journal of Materials Science: Materials in Electronics</i> , 2016 , 27, 7953-7961	2.1	9

40	Statistical prediction of nanoparticle delivery: from culture media to cell. Nanotechnology, 2015, 26, 15	53,041	8
39	Microstructural evolution of copper t itanium alloy during in-situ formation of TiB2 particles. <i>Transactions of Nonferrous Metals Society of China</i> , 2013 , 23, 2994-3001	3.3	8
38	Magnetostructural influences of thin Mg insert layers in crystalline CoFe(B)/MgO/CoFe(B) magnetic tunnel junctions. <i>Applied Physics Letters</i> , 2010 , 97, 252502	3.4	8
37	A comparison of experimental and calculated electron-energy loss near-edge structure of carbon, and the nitrides of boron, carbon and silicon using multiple scattering theory. <i>Diamond and Related Materials</i> , 1998 , 7, 1303-1307	3.5	8
36	As received TiBAIBV/ESiC fibre composite. <i>Materials Science and Technology</i> , 1994 , 10, 797-806	1.5	8
35	Surface Fatigue Behavior of a WC/aC:H Thin-Film and the Tribochemical Impact of Zinc Dialkyldithiophosphate. <i>ACS Applied Materials & Dialkyldithiophosphate</i> . <i>ACS Applied Materials & Dialkyldithiophosphate</i> .	9.5	7
34	Toward Developing a Predictive Approach To Assess Electron Beam Instability during Transmission Electron Microscopy of Drug Molecules. <i>Molecular Pharmaceutics</i> , 2018 , 15, 5114-5123	5.6	7
33	Homogeneous coating of photonic macroporous oxides with inorganic nanocrystals. <i>Nanoscale</i> , 2014 , 6, 4043-6	7.7	6
32	Electron Microscopy of Cocatalyst Nanostructures on Semiconductor Photocatalysts. <i>ChemCatChem</i> , 2011 , 3, 990-998	5.2	6
31	Understanding the effect of aluminium on microstructure in low level nitrogen steels. <i>Materials Science and Technology</i> , 2009 , 25, 1243-1248	1.5	6
30	Preliminary Corrosion Evaluation of Some Novel Bulk Electron Beam Evaporated Magnesium Alloys. <i>Corrosion Reviews</i> , 1998 , 16, 159-174	3.2	6
29	The effects of absorption and inelastic scattering of high-resolution electron microscopic images of YBa2Cu3O7-x. <i>Journal of Physics Condensed Matter</i> , 1989 , 1, 1561-1570	1.8	6
28	Materials analysis: Good vibrations. <i>Nature</i> , 2014 , 514, 177-8	50.4	5
27	Robust theoretical modelling of core ionisation edges for quantitative electron energy loss spectroscopy of B- and N-doped graphene. <i>Journal of Physics Condensed Matter</i> , 2017 , 29, 225303	1.8	5
26	Understanding the wear behaviour of non-doped and Si,O-doped diamond-like carbon films. <i>RSC Advances</i> , 2017 , 7, 43600-43610	3.7	5
25	Analysis of computational EELS modelling results for MgO-based systems. <i>Ultramicroscopy</i> , 2010 , 110, 1059-1069	3.1	5
24	Microstructural evolution during pyrolysis of triol-based sol-gel single-layer Pb(Zr0.53Ti0.47)O3 thin films. <i>Journal of Materials Research</i> , 2002 , 17, 2066-2074	2.5	5
23	ELNES fingerprint of Al coordination in nesosilicates. <i>Micron and Microscopica Acta</i> , 1992 , 23, 169-170		5

22	Toxicity and oxidative stress responses induced by nano- and micro-CoCrMo particles. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 5648-5657	7.3	4
21	A high-resolution study of graphite nodule formation in experimental medium-carbon machining steel. <i>Materials Characterization</i> , 2017 , 131, 508-516	3.9	4
20	CarbonBoronBitrogen alloys from borazarene-derived mesophase pitches. <i>Carbon</i> , 2002 , 40, 2157-2167	10.4	4
19	Development of physical vapour deposited MgIr alloys Part 3 IComparison of alloying and corrosion behaviour in MgIV and MgIr physical vapour deposited alloys. <i>Materials Science and Technology</i> , 1999 , 15, 1373-1378	1.5	4
18	Electron energy-loss studies of FettrMn oxide films. <i>The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties</i> , 1990 , 62, 229-238		4
17	Hydrothermal Synthesis and Phase Formation Mechanism of TiO2(B) Nanorods via Alkali Metal Titanate Phase Transformation. <i>Solid State Phenomena</i> , 2018 , 283, 23-36	0.4	4
16	Synthesis and organogelating behaviour of amino acid-functionalised triphenylenes. <i>Soft Matter</i> , 2017 , 13, 5922-5932	3.6	3
15	A study on the effects of three types of deflocculants and the increase in the pH on the rheological behavior of nano carbon suspensions. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 4507-13	1.3	3
14	Systematic Analysis of the Coupling Effects within Supported Plasmonic Nanorod Antenna Arrays. Journal of Physical Chemistry C, 2018 , 122, 22041-22053	3.8	3
13	Chemical Evolution of CoCrMo Wear Particles: An in Situ Characterization Study. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 9894-9901	3.8	2
12	Quantifying Nanoparticle Cell Interactions. <i>Microscopy and Microanalysis</i> , 2014 , 20, 1300-1301	0.5	2
11	Fantastic improvement in quality and quantity of carbon nanotubes synthesized on Al2O3-SiO2 supports by N2 pretreatment. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 8835-43	1.3	2
10	Synthesis of suitable SiO2 nano particles as the core in core-shell nanostructured materials. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 5311-7	1.3	2
9	The behaviour of high alloy steels used as heat exchange components in coal gasification plants. <i>Materials at High Temperatures</i> , 1993 , 11, 51-57	1.1	2
8	Identification of lithium atoms in solid oxides: A high-resolution electron microscopic study of LiMn2O4. <i>Journal of Solid State Chemistry</i> , 1989 , 79, 112-118	3.3	2
7	Nanomaterials: Dispersion, Dissolution and Dose. Frontiers of Nanoscience, 2015, 8, 183-216	0.7	1
6	Investigating the spatial distribution of plasmon modes in carbon cones. <i>Microscopy and Microanalysis</i> , 2012 , 18, 1540-1541	0.5	1
5	Bench scale production of pure nanocrystalline molybdenum nitride through solid-gas phase reduction. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 9230-3	1.3	1

4	Effect of niobium and titanium on tin precipitation in Fe alloys. <i>Materials Science and Technology</i> , 1999 , 15, 1001-1008	1.5	1
3	Dynamic microscopy relating structure and function. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2020 , 378, 20190596	3	O
2	Hydrothermal Synthesis of Silver Nanoparticles for High Throughput Biosensing Applications. <i>MRS Advances</i> , 2018 , 3, 861-866	0.7	
1	Synthesis and characterisation of titanium/aluminium nanolaminates. <i>Journal of Magnetism and Magnetic Materials</i> , 1996 , 156, 17-18	2.8	