
John W Morgan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8140277/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nutrients and herbivores impact grassland stability across spatial scales through different pathways. Global Change Biology, 2022, 28, 2678-2688.	9.5	18
2	Multiâ€scale habitat selection by a cryptic, critically endangered grassland bird—The Plainsâ€wanderer (<i>Pedionomus torquatus</i>): Implications for habitat management and conservation. Austral Ecology, 2022, 47, 698-712.	1.5	8
3	Perennial pasture grass invasion changes fire behaviour and recruitment potential of a native forb in a temperate Australian grassland. Biological Invasions, 2022, 24, 1755-1765.	2.4	5
4	The Australasian grass flora in a global context. Journal of Systematics and Evolution, 2022, 60, 675-690.	3.1	4
5	Intraspecific trait variation in alpine plants relates to their elevational distribution. Journal of Ecology, 2022, 110, 860-875.	4.0	21
6	Survival and growth of a high mountain daisy transplanted outside its local range, and implications for climate-induced distribution shifts. AoB PLANTS, 2022, 14, plac014.	2.3	0
7	Livestock grazing to maintain habitat of a critically endangered grassland bird: Is grazer species important?. Ecological Applications, 2022, 32, e2587.	3.8	6
8	Nitrogen increases earlyâ€stage and slows lateâ€stage decomposition across diverse grasslands. Journal of Ecology, 2022, 110, 1376-1389.	4.0	12
9	Nutrient identity modifies the destabilising effects of eutrophication in grasslands. Ecology Letters, 2022, 25, 754-765.	6.4	17
10	Landâ€use legacies limit the effectiveness of switches in disturbance type to restore endangered grasslands. Restoration Ecology, 2021, 29, e13271.	2.9	14
11	Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology, 2021, 102, e03218.	3.2	62
12	The forgotten annual forbs of Victoria's basalt plains grassland. Ecological Management and Restoration, 2021, 22, 126-133.	1.5	1
13	Species loss due to nutrient addition increases with spatial scale in global grasslands. Ecology Letters, 2021, 24, 2100-2112.	6.4	13
14	Predicting species and community responses to global change using structured expert judgement: An Australian mountain ecosystems case study. Global Change Biology, 2021, 27, 4420-4434.	9.5	16
15	Temporal rarity is a better predictor of local extinction risk than spatial rarity. Ecology, 2021, 102, e03504.	3.2	14
16	AusTraits, a curated plant trait database for the Australian flora. Scientific Data, 2021, 8, 254.	5.3	73
17	Overabundant native herbivore impacts on native plant communities in southâ€eastern Australia. Ecological Management and Restoration, 2021, 22, 9-15.	1.5	10
18	Does intraspecific variation in demography have implications for fire management of an obligateâ€seeder shrub across its geographic range?. Austral Ecology, 2021, 46, 315-323.	1.5	0

#	Article	IF	CITATIONS
19	Opposing community assembly patterns for dominant and nondominant plant species in herbaceous ecosystems globally. Ecology and Evolution, 2021, 11, 17744-17761.	1.9	8
20	Dominant C 3 tussock grasses are resilient to the reâ€introduction of fire in longâ€unburned temperate grasslands. Applied Vegetation Science, 2020, 23, 149-158.	1.9	5
21	General destabilizing effects of eutrophication on grassland productivity at multiple spatial scales. Nature Communications, 2020, 11, 5375.	12.8	75
22	Shrinking opportunities for establishment of native annual forbs in fragmented grassy woodlands. Applied Vegetation Science, 2020, 23, 575-585.	1.9	4
23	Genetic data and climate niche suitability models highlight the vulnerability of a functionally important plant species from southâ€eastern Australia. Evolutionary Applications, 2020, 13, 2014-2029.	3.1	10
24	How widespread are recruitment bottlenecks in fragmented populations of the savanna tree Banksia marginata (Proteaceae)?. Plant Ecology, 2020, 221, 545-557.	1.6	4
25	Alpine treeline ecotone stasis in the face of recent climate change and disturbance by fire. PLoS ONE, 2020, 15, e0231339.	2.5	16
26	Alpine treeline ecotone stasis in the face of recent climate change and disturbance by fire. , 2020, 15, e0231339.		0
27	Alpine treeline ecotone stasis in the face of recent climate change and disturbance by fire. , 2020, 15, e0231339.		Ο
28	Alpine treeline ecotone stasis in the face of recent climate change and disturbance by fire. , 2020, 15, e0231339.		0
29	Alpine treeline ecotone stasis in the face of recent climate change and disturbance by fire. , 2020, 15, e0231339.		0
30	Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17867-17873.	7.1	141
31	Multivariate drivers of diversity in temperate Australian native grasslands. Australian Journal of Botany, 2019, 67, 367.	0.6	12
32	Local population density affects pollinator visitation in the endangered grassland daisy Rutidosis leptorhynchoides (Asteraceae). Australian Journal of Botany, 2019, 67, 638.	0.6	5
33	Effects of drought and fire on resprouting capacity of 52 temperate Australian perennial native grasses. New Phytologist, 2019, 221, 1424-1433.	7.3	37
34	Message in a bottle: Inadvertent loss of seeds of native grassland species as a result of rudimentary longâ€ŧerm storage. Ecological Management and Restoration, 2019, 20, 159-161.	1.5	0
35	Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nature Ecology and Evolution, 2019, 3, 400-406.	7.8	97
36	Increased Soil Frost Versus Summer Drought as Drivers of Plant Biomass Responses to Reduced Precipitation: Results from a Globally Coordinated Field Experiment. Ecosystems, 2018, 21, 1432-1444.	3.4	18

#	Article	IF	CITATIONS
37	Biodiversity responds to increasing climatic extremes in a biome-specific manner. Science of the Total Environment, 2018, 634, 382-393.	8.0	19
38	Timeâ€sinceâ€fire and climate interact to affect the structural recovery of an Australian semiâ€arid plant community. Austral Ecology, 2018, 43, 456-469.	1.5	10
39	Increasing and declining native species in urban remnant grasslands respond differently to nitrogen addition and disturbance. Annals of Botany, 2018, 121, 691-697.	2.9	8
40	Enhancing plant diversity in a novel grassland using seed addition. Journal of Applied Ecology, 2018, 55, 215-224.	4.0	16
41	Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology and Evolution, 2018, 2, 50-56.	7.8	172
42	Tundra Trait Team: A database of plant traits spanning the tundra biome. Global Ecology and Biogeography, 2018, 27, 1402-1411.	5.8	57
43	Change in dominance determines herbivore effects on plant biodiversity. Nature Ecology and Evolution, 2018, 2, 1925-1932.	7.8	140
44	Non-native plant cover and functional trait composition of urban temperate grasslands in relation to local- and landscape-scale road density. Biological Invasions, 2018, 20, 3025-3036.	2.4	9
45	Spatial heterogeneity in species composition constrains plant community responses to herbivory and fertilisation. Ecology Letters, 2018, 21, 1364-1371.	6.4	38
46	What does it take to do successful adaptive management? A case study highlighting Coastal Grassy Woodland restoration at Yanakie Isthmus. Ecological Management and Restoration, 2018, 19, 111-123.	1.5	8
47	The golf ball method for rapid assessment of grassland structure. Ecological Management and Restoration, 2017, 18, 134-140.	1.5	6
48	Biotic homogenization in an increasingly urbanized temperate grassland ecosystem. Journal of Vegetation Science, 2017, 28, 550-561.	2.2	49
49	Out of the shadows: multiple nutrient limitations drive relationships among biomass, light and plant diversity. Functional Ecology, 2017, 31, 1839-1846.	3.6	55
50	The importance of small urban reserves for plant conservation. Biological Conservation, 2017, 213, 146-153.	4.1	42
51	How Species Boundaries Are Determined: A Response to Alexander et al Trends in Ecology and Evolution, 2017, 32, 7-8.	8.7	7
52	Species origin affects the rate of response to interâ€annual growing season precipitation and nutrient addition in four Australian native grasslands. Journal of Vegetation Science, 2016, 27, 1164-1176.	2.2	18
53	Addition of multiple limiting resources reduces grassland diversity. Nature, 2016, 537, 93-96.	27.8	355
54	Fire regime, not time-since-fire, affects soil fungal community diversity and composition in temperate grasslands. FEMS Microbiology Letters, 2016, 363, fnw196.	1.8	26

#	Article	IF	CITATIONS
55	Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness― Science, 2016, 351, 457-457.	12.6	16
56	Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 2016, 529, 390-393.	27.8	564
57	Grassland productivity limited by multiple nutrients. Nature Plants, 2015, 1, 15080.	9.3	403
58	A plant strategy approach to understand multidecadal change in community assembly processes in Australian grassy woodlands. Journal of Ecology, 2015, 103, 1300-1307.	4.0	9
59	Ecological Responses to 52 Years of Experimental Snow Manipulation in High-Alpine Cushionfield, Old Man Range, South-Central New Zealand. Arctic, Antarctic, and Alpine Research, 2015, 47, 751-772.	1.1	20
60	Anthropogenic nitrogen deposition predicts local grassland primary production worldwide. Ecology, 2015, 96, 1459-1465.	3.2	143
61	The rise and fall of <i>Leptospermum laevigatum</i> : plant community change associated with the invasion and senescence of a rangeâ€expanding native species. Applied Vegetation Science, 2015, 18, 323-331.	1.9	9
62	Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nature Communications, 2015, 6, 7710.	12.8	143
63	Changes in plant species density in an experimentally fragmented forest landscape: Are the effects scale-dependent?. Austral Ecology, 2014, 39, 416-423.	1.5	7
64	Anthropogenicâ€based regionalâ€scale factors most consistently explain plotâ€level exotic diversity in grasslands. Global Ecology and Biogeography, 2014, 23, 802-810.	5.8	32
65	Can severe drought reverse woody plant encroachment in a temperate <scp>A</scp> ustralian woodland?. Journal of Vegetation Science, 2014, 25, 928-936.	2.2	9
66	What potential is there for regeneration of native species from the soil seed bank in Coast Tea Tree-dominated scrub?. Ecological Management and Restoration, 2014, 15, 80-83.	1.5	6
67	Linking Indices for Biodiversity Monitoring to Extinction Risk Theory. Conservation Biology, 2014, 28, 1575-1583.	4.7	23
68	Foliar freezing resistance of Australian alpine plants over the growing season. Austral Ecology, 2013, 38, 152-161.	1.5	26
69	Postâ€fire regeneration in alpine heathland: Does fire severity matter?. Austral Ecology, 2013, 38, 199-207.	1.5	26
70	Pine plantations modify local conditions in forest fragments in southeastern Australia: Insights from a fragmentation experiment. Forest Ecology and Management, 2013, 305, 264-272.	3.2	13
71	Predicting invasion in grassland ecosystems: is exotic dominance the real embarrassment of richness?. Global Change Biology, 2013, 19, 3677-3687.	9.5	70
72	Severe Habitat Fragmentation Leads to Declines in Genetic Variation, Mate Availability, and Reproductive Success in Small Populations of a Once-Common Australian Grassland Daisy. International Journal of Plant Sciences, 2013, 174, 1209-1218.	1.3	18

#	Article	IF	CITATIONS
73	Response to Comments on "Productivity Is a Poor Predictor of Plant Species Richnessâ€, Science, 2012, 335, 1441-1441.	12.6	30
74	Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming?. Global Change Biology, 2012, 18, 1357-1371.	9.5	182
75	Germination strategies of annual forbs from south-eastern Australian semiarid grasslands. Australian Journal of Botany, 2012, 60, 340.	0.6	12
76	Resilience, persistence and relationship to standing vegetation in soil seed banks of semiâ€arid Australian old fields. Applied Vegetation Science, 2012, 15, 48-61.	1.9	20
77	Early lifeâ€history stages drive community reassembly in <scp>A</scp> ustralian oldâ€fields. Journal of Vegetation Science, 2012, 23, 721-731.	2.2	39
78	Community (re)organization in an experimentally fragmented forest landscape: insights from occupancy–scale patterns of common plant species. Journal of Vegetation Science, 2012, 23, 962-969.	2.2	10
79	Experimental changes in disturbance type do not induce shortâ€ŧerm shifts in plant community structure in three semiâ€∎rid grasslands of the Victorian Riverine Plain managed for nature conservation. Ecological Management and Restoration, 2012, 13, 175-182.	1.5	6
80	Effects of grazing exclusion on plant species richness and phytomass accumulation vary across a regional productivity gradient. Journal of Vegetation Science, 2011, 22, 130-142.	2.2	71
81	Seed characteristics and soil surface patch type interact to affect germination of semi-arid woodland species. Plant Ecology, 2011, 212, 91-103.	1.6	28
82	Life-form species–area relationships in a temperate eucalypt woodland community. Plant Ecology, 2011, 212, 1047-1055.	1.6	7
83	Using plant functional traits to explain community composition across a strong environmental filter in Australian alpine snowpatches. Plant Ecology, 2011, 212, 1491-1499.	1.6	59
84	Recovery of understorey vegetation after release from a long history of sheep grazing in a herbâ€rich woodland. Austral Ecology, 2010, 35, 505-514.	1.5	13
85	A conceptual model of plant community changes following cessation of cultivation in semiâ€arid grassland. Applied Vegetation Science, 2010, 13, 389-402.	1.9	52
86	How widespread is woody plant encroachment in temperate Australia? Changes in woody vegetation cover in lowland woodland and coastal ecosystems in Victoria from 1989 to 2005. Journal of Biogeography, 2010, 37, 722-732.	3.0	55
87	Patterns in alpine seedling emergence and establishment across a stress gradient of mountain summits in south-eastern Australia. Plant Ecology and Diversity, 2009, 2, 5-16.	2.4	45
88	Functional traits and prior abundance explain native plant extirpation in a fragmented woodland landscape. Journal of Ecology, 2009, 97, 718-727.	4.0	34
89	Backcountry Huts as Introduction Points for Invasion by Non-native Species into Subalpine Vegetation. Arctic, Antarctic, and Alpine Research, 2009, 41, 238-245.	1.1	15
90	Do Facilitative Interactions with Neighboring Plants Assist the Growth of Seedlings at High Altitudes in Alpine Australia?. Arctic, Antarctic, and Alpine Research, 2009, 41, 381-387.	1.1	27

John W Morgan

(

#	Article	IF	CITATIONS
91	An assessment of the relationship between tree-ring counts and basal girth of high-altitude populations of Eucalyptus pauciflora (Myrtaceae). Australian Journal of Botany, 2009, 57, 583.	0.6	6
92	Woody plant encroachment reduces species richness of herbâ€rich woodlands in southern Australia. Austral Ecology, 2008, 33, 278-289.	1.5	65
93	A framework to predict the effects of livestock grazing and grazing exclusion on conservation values in natural ecosystems in Australia. Australian Journal of Botany, 2007, 55, 401.	0.6	164
94	Using historical records, aerial photography and dendroecological methods to determine vegetation changes in a grassy woodland since European settlement. Australian Journal of Botany, 2007, 55, 1.	0.6	45
95	Establishment of native perennial shrubs in an agricultural landscape. Austral Ecology, 2007, 32, 617-625.	1.5	11
96	Changes in the stand structure (1975?2000) of coastal Banksia forest in the long absence of fire. Austral Ecology, 2007, 32, 239-244.	1.5	16
97	LOCAL EXTINCTION OF GRASSLAND PLANTS: THE LANDSCAPE MATRIX IS MORE IMPORTANT THAN PATCH ATTRIBUTES. Ecology, 2006, 87, 3000-3006.	3.2	76
98	Bryophyte Mats Inhibit Germination of Non-native Species in Burnt Temperate Native Grassland Remnants. Biological Invasions, 2006, 8, 159-168.	2.4	42
99	Plant traits and local extinctions in natural grasslands along an urban-rural gradient. Journal of Ecology, 2005, 93, 1203-1213.	4.0	159
100	Plant invasions in treeless vegetation of the Australian Alps. Perspectives in Plant Ecology, Evolution and Systematics, 2005, 7, 159-171.	2.7	110
101	Communityâ€level changes in Australian subalpine vegetation following invasion by the nonâ€native shrub Cytisus scoparius. Journal of Vegetation Science, 2004, 15, 595-604.	2.2	42
102	Extent of invasion of Tasmanian native vegetation by the exotic bumblebee Bombus terrestris (Apoidea:) Tj ETQo	0 0 0 rgB⊺	[gyerlock 1
103	Recent Forest Encroachment into Subalpine Grasslands near Mount Hotham, Victoria, Australia. Arctic, Antarctic, and Alpine Research, 2001, 33, 369-377.	1.1	31
104	Recent Forest Encroachment into Subalpine Grasslands near Mount Hotham, Victoria, Australia. Arctic, Antarctic, and Alpine Research, 2001, 33, 369.	1.1	22
105	Reproductive Success in Reestablished versus Natural Populations of a Threatened Grassland Daisy () Tj ETQq1 1	0.784314	rgBT /Over
106	Effects of Population Size on Seed Production and Germinability in an Endangered, Fragmented Grassland Plant. Conservation Biology, 1999, 13, 266-273.	4.7	136
107	Title is missing!. Plant Ecology, 1999, 144, 127-144.	1.6	90
108	Effects of time-since-fire on the tussock dynamics of a dominant grass (Themeda triandra) in a temperate Australian grassland. Biological Conservation, 1999, 88, 379-386.	4.1	128

John W Morgan

#	Article	IF	CITATIONS
109	Vegetation Changes after 10 Years of Grazing Exclusion and Intermittent Burning in a Themeda triandra (Poaceae) Grassland Reserve in South-eastern Australia. Australian Journal of Botany, 1999, 47, 537.	0.6	39
110	Patterns of invasion of an urban remnant of a species-rich grassland in southeastern Australia by non-native plant species. Journal of Vegetation Science, 1998, 9, 181-190.	2.2	85
111	Small-scale plant dynamics in temperateThemeda triandragrasslands of southeastern Australia. Journal of Vegetation Science, 1998, 9, 347-360.	2.2	22
112	Composition and seasonal flux of the soil seed bank of species-richThemeda triandragrasslands in relation to burning history. Journal of Vegetation Science, 1998, 9, 145-156.	2.2	69
113	Plant growth in a fragmented forest is a consequence of top-down and bottom-up processes, but not their interaction. Journal of Plant Ecology, 0, , rtw067.	2.3	0
114	Conservation challenges for Victorian Banksias: Workshop May 2020. Ecological Management and Restoration, 0, , .	1.5	0