Maria Angel Garcia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8140170/publications.pdf

Version: 2024-02-01

50 papers 2,864 citations

27 h-index

230014

223390 49 g-index

51 all docs

51 docs citations

51 times ranked

4845 citing authors

#	Article	IF	Citations
1	The p38 MAPK Components and Modulators as Biomarkers and Molecular Targets in Cancer. International Journal of Molecular Sciences, 2022, 23, 370.	1.8	29
2	Caffeine and Chlorogenic Acid Combination Attenuate Early-Stage Chemically Induced Colon Carcinogenesis in Mice: Involvement of oncomiR miR-21a-5p. International Journal of Molecular Sciences, 2022, 23, 6292.	1.8	10
3	Metabolomic profile of cancer stem cellâ€derived exosomes from patients with malignant melanoma. Molecular Oncology, 2021, 15, 407-428.	2.1	31
4	Clinical failure of nanoparticles in cancer: mimicking nature's solutions. Nanomedicine, 2020, 15, 2311-2324.	1.7	16
5	Uncovering Tumour Heterogeneity through PKR and nc886 Analysis in Metastatic Colon Cancer Patients Treated with 5-FU-Based Chemotherapy. Cancers, 2020, 12, 379.	1.7	12
6	Pancreatic (pro)enzymes treatment suppresses BXPC-3 pancreatic Cancer Stem Cell subpopulation and impairs tumour engrafting. Scientific Reports, 2019, 9, 11359.	1.6	9
7	Melanoma cancer stem-like cells: Optimization method for culture, enrichment and maintenance. Tissue and Cell, 2019, 60, 48-59.	1.0	10
8	Drinking for protection? Epidemiological and experimental evidence on the beneficial effects of coffee or major coffee compounds against gastrointestinal and liver carcinogenesis. Food Research International, 2019, 123, 567-589.	2.9	36
9	Mesenchymal stem cell's secretome promotes selective enrichment of cancer stem-like cells with specific cytogenetic profile. Cancer Letters, 2018, 429, 78-88.	3.2	27
10	Activating Transcription Factor 4 Modulates TGFÎ ² -Induced Aggressiveness in Triple-Negative Breast Cancer via SMAD2/3/4 and mTORC2 Signaling. Clinical Cancer Research, 2018, 24, 5697-5709.	3.2	42
11	Validation of suitable normalizers for miR expression patterns analysis covering tumour heterogeneity. Scientific Reports, 2017, 7, 39782.	1.6	19
12	A formulation of pancreatic pro-enzymes provides potent anti-tumour efficacy: a pilot study focused on pancreatic and ovarian cancer. Scientific Reports, 2017, 7, 13998.	1.6	9
13	Clinical and therapeutic potential of protein kinase PKR in cancer and metabolism. Expert Reviews in Molecular Medicine, 2017, 19, e9.	1.6	29
14	1-(Benzenesulfonyl)-1,5-dihydro-4,1-benzoxazepine as a new scaffold for the design of antitumor compounds. Future Medicinal Chemistry, 2017, 9, 1129-1140.	1.1	4
15	Low adherent cancer cell subpopulations are enriched in tumorigenic and metastatic epithelial-to-mesenchymal transition-induced cancer stem-like cells. Scientific Reports, 2016, 6, 18772.	1.6	92
16	Polymers, scaffolds and bioactive molecules with therapeutic properties in osteochondral pathologies: what's new?. Expert Opinion on Therapeutic Patents, 2016, 26, 877-890.	2.4	12
17	5-Fluorouracil derivatives: a patent review (2012 – 2014). Expert Opinion on Therapeutic Patents, 2015, 25, 1131-1144.	2.4	35
18	Activation of the Double-stranded RNA-dependent Protein Kinase PKR by Small Ubiquitin-like Modifier (SUMO). Journal of Biological Chemistry, 2014, 289, 26357-26367.	1.6	22

#	Article	IF	Citations
19	The impact of PKR activation: from neurodegeneration to cancer. FASEB Journal, 2014, 28, 1965-1974.	0.2	90
20	Cardiomyogenic differentiation potential of human endothelial progenitor cells isolated from patients with myocardial infarction. Cytotherapy, 2014, 16, 1229-1237.	0.3	7
21	HER2-signaling pathway, JNK and ERKs kinases, and cancer stem-like cells are targets of Bozepinib. Oncotarget, 2014, 5, 3590-3606.	0.8	27
22	EMT and EGFR in CTCs cytokeratin negative non-metastatic breast cancer. Oncotarget, 2014, 5, 7486-7497.	0.8	71
23	In vitro treatment of carcinoma cell lines with pancreatic (pro)enzymes suppresses the EMT programme and promotes cell differentiation. Cellular Oncology (Dordrecht), 2013, 36, 289-301.	2.1	10
24	How Can Nanotechnology Help to Repair the Body? Advances in Cardiac, Skin, Bone, Cartilage and Nerve Tissue Regeneration. Materials, 2013, 6, 1333-1359.	1.3	53
25	Cadmium Modifies the Cell Cycle and Apoptotic Profiles of Human Breast Cancer Cells Treated with 5-Fluorouracil. International Journal of Molecular Sciences, 2013, 14, 16600-16616.	1.8	51
26	Bozepinib, a novel small antitumor agent, induces PKR-mediated apoptosis and synergizes with IFNα triggering apoptosis, autophagy and senescence. Drug Design, Development and Therapy, 2013, 7, 1301.	2.0	13
27	Enantiospecific Synthesis of Heterocycles Linked to Purines: Different Apoptosis Modulation of Enantiomers in Breast Cancer Cells. Current Medicinal Chemistry, 2013, 20, 4924-4934.	1.2	11
28	Functionalized Nanostructures with Application in Regenerative Medicine. International Journal of Molecular Sciences, 2012, 13, 3847-3886.	1.8	74
29	Role of Cancer Stem Cells of Breast, Colon, and Melanoma Tumors in the Response to Antitumor Therapy., 2012,, 157-171.		1
30	SIRT1 stabilizes PML promoting its sumoylation. Cell Death and Differentiation, 2011, 18, 72-79.	5.0	49
31	Synthesis and anticancer activity of (RS)-9-(2,3-dihydro-1,4-benzoxaheteroin-2-ylmethyl)-9H-purines. European Journal of Medicinal Chemistry, 2011, 46, 3795-3801.	2.6	41
32	Synthesis and Anticancer Activity of the (<i>R</i> , <i>S</i>)â€Benzofused 1,5â€Oxathiepine Moiety Tethered to Purines through Alkylidenoxy Linkers. ChemMedChem, 2011, 6, 1854-1859.	1.6	8
33	New (RS)-benzoxazepin-purines with antitumour activity: The chiral switch from (RS)-2,6-dichloro-9-[1-(p-nitrobenzenesulfonyl)-1,2,3,5-tetrahydro-4,1-benzoxazepin-3-yl]-9H-purine. European Journal of Medicinal Chemistry, 2011, 46, 249-258.	2.6	39
34	Regulation of Vaccinia Virus E3 Protein by Small Ubiquitin-Like Modifier Proteins. Journal of Virology, 2011, 85, 12890-12900.	1.5	27
35	The Chemotherapeutic Drug 5-Fluorouracil Promotes PKR-Mediated Apoptosis in a p53- Independent Manner in Colon and Breast Cancer Cells. PLoS ONE, 2011, 6, e23887.	1.1	47
36	Activation of NF-kB Pathway by Virus Infection Requires Rb Expression. PLoS ONE, 2009, 4, e6422.	1.1	32

#	Article	IF	Citations
37	Control of virus infection by tumour suppressors. Carcinogenesis, 2007, 28, 1140-1144.	1.3	9
38	Novel and unexpected role for the tumor suppressor ARF in viral infection surveillance. Future Virology, 2007, 2, 625-629.	0.9	1
39	The dsRNA protein kinase PKR: Virus and cell control. Biochimie, 2007, 89, 799-811.	1.3	552
40	Antiviral action of the tumor suppressor ARF. EMBO Journal, 2006, 25, 4284-4292.	3 . 5	43
41	Impact of Protein Kinase PKR in Cell Biology: from Antiviral to Antiproliferative Action. Microbiology and Molecular Biology Reviews, 2006, 70, 1032-1060.	2.9	656
42	Human Gene Profiling in Response to the Active Protein Kinase, Interferon-induced Serine/threonine Protein Kinase (PKR), in Infected Cells. Journal of Biological Chemistry, 2006, 281, 18734-18745.	1.6	30
43	Resistance to viral infection of super p53 mice. Oncogene, 2005, 24, 3059-3062.	2.6	66
44	Identification of a nuclear export signal in the KSHV latent protein LANA2 mediating its export from the nucleus. Experimental Cell Research, 2005, 311, 96-105.	1.2	20
45	Involvement of PKR and RNase L in translational control and induction of apoptosis after Hepatitis C polyprotein expression from a vaccinia virus recombinant. Virology Journal, 2005, 2, 81.	1.4	12
46	TRAF Family Proteins Link PKR with NF-κB Activation. Molecular and Cellular Biology, 2004, 24, 4502-4512.	1.1	147
47	The latency protein LANA2 from Kaposi's sarcoma-associated herpesvirus inhibits apoptosis induced by dsRNA-activated protein kinase but not RNase L activation. Journal of General Virology, 2003, 84, 1463-1470.	1.3	70
48	Caspase 9 activation by the dsRNA-dependent protein kinase, PKR: molecular mechanism and relevance. FEBS Letters, 2002, 529, 249-255.	1.3	49
49	Anti-apoptotic and oncogenic properties of the dsRNA-binding protein of vaccinia virus, E3L. Oncogene, 2002, 21, 8379-8387.	2.6	50
50	The catalytic activity of dsRNA-dependent protein kinase, PKR, is required for NF-κB activation. Oncogene, 2001, 20, 385-394.	2.6	64