
Li Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8139803/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Facile and green fabrication of flame-retardant Ti3C2Tx MXene networks for ultrafast, reusable and weather-resistant fire warning. Chemical Engineering Journal, 2022, 427, 131615.	12.7	149
2	Green and Rapid Preparation of Fluorosilicone Rubber Foam Materials with Tunable Chemical Resistance for Efficient Oil–Water Separation. Polymers, 2022, 14, 1628.	4.5	18
3	Processing, thermal conductivity and flame retardant properties of silicone rubber filled with different geometries of thermally conductive fillers: A comparative study. Composites Part B: Engineering, 2022, 238, 109907.	12.0	76
4	Smart fire-warning materials and sensors: Design principle, performances, and applications. Materials Science and Engineering Reports, 2022, 150, 100690.	31.8	91
5	Overheard conversations can influence children's generosity. Developmental Science, 2021, 24, e13068.	2.4	7
6	Mechanically flexible, super-hydrophobic and flame-retardant hybrid nano-silica/graphene oxide wide ribbon decorated sponges for efficient oil/water separation and fire warning response. Composites Part A: Applied Science and Manufacturing, 2021, 140, 106191.	7.6	90
7	Facile and green synthesis of mechanically flexible and flame-retardant clay/graphene oxide nanoribbon interconnected networks for fire safety and prevention. Chemical Engineering Journal, 2021, 405, 126620.	12.7	116
8	Effects of Trust and Threat Messaging on Academic Cheating: A Field Study. Psychological Science, 2021, 32, 735-742.	3.3	11
9	Using environmental nudges to reduce academic cheating in young children. Developmental Science, 2021, 24, e13108.	2.4	14
10	Ultrafast Flame-Induced Pyrolysis of Poly(dimethylsiloxane) Foam Materials toward Exceptional Superhydrophobic Surfaces and Reliable Mechanical Robustness. ACS Applied Materials & Interfaces, 2021, 13, 23161-23172.	8.0	78
11	Bamboo-inspired mechanically flexible and electrically conductive polydimethylsiloxane foam materials with designed hierarchical pore structures for ultra-sensitive and reliable piezoresistive pressure sensor. Composites Part B: Engineering, 2021, 225, 109243.	12.0	87
12	Temperature-responsive resistance sensitivity controlled by L-ascorbic acid and silane co-functionalization in flame-retardant GO network for efficient fire early-warning response. Chemical Engineering Journal, 2020, 386, 123894.	12.7	127
13	One-step and green synthesis of lightweight, mechanically flexible and flame-retardant polydimethylsiloxane foam nanocomposites via surface-assembling ultralow content of graphene derivative. Chemical Engineering Journal, 2020, 393, 124724.	12.7	78
14	Simultaneous improvements in fire resistance and alarm response of GO paper via one-step 3-mercaptopropyltrimethoxysilane functionalization for efficient fire safety and prevention. Composites Part A: Applied Science and Manufacturing, 2020, 131, 105797.	7.6	72
15	Water-based hybrid coatings toward mechanically flexible, super-hydrophobic and flame-retardant polyurethane foam nanocomposites with high-efficiency and reliable fire alarm response. Composites Part B: Engineering, 2020, 193, 108017.	12.0	176
16	Enhanced mechanical property and flame resistance of graphene oxide nanocomposite paper modified with functionalized silica nanoparticles. Composites Part B: Engineering, 2019, 177, 107347.	12.0	61
17	Silane grafted graphene oxide papers for improved flame resistance and fast fire alarm response. Composites Part B: Engineering, 2019, 168, 413-420.	12.0	135
18	Construction of sandwich-like porous structure of graphene-coated foam composites for ultrasensitive and flexible pressure sensors. Nanoscale, 2019, 11, 10229-10238.	5.6	111

LI ΖΗΑΟ

#	Article	IF	CITATIONS
19	<i>In situ</i> reactive self-assembly of a graphene oxide nano-coating in polymer foam materials with synergistic fire shielding properties. Journal of Materials Chemistry A, 2019, 7, 27032-27040.	10.3	78
20	Design of mechanically stable, electrically conductive and highly hydrophobic three-dimensional graphene nanoribbon composites by modulating the interconnected network on polymer foam skeleton. Composites Science and Technology, 2019, 171, 162-170.	7.8	82
21	An insulating second filler tuning porous conductive composites for highly sensitive and fast responsive organic vapor sensor. Sensors and Actuators B: Chemical, 2019, 285, 254-263.	7.8	23
22	Temperature-triggered sensitive resistance transition of graphene oxide wide-ribbons wrapped sponge for fire ultrafast detecting and early warning. Journal of Hazardous Materials, 2019, 363, 286-294.	12.4	111
23	Efficient Flame Detection and Early Warning Sensors on Combustible Materials Using Hierarchical Graphene Oxide/Silicone Coatings. ACS Nano, 2018, 12, 416-424.	14.6	227
24	Facile synthesis of super-hydrophobic, electrically conductive and mechanically flexible functionalized graphene nanoribbon/polyurethane sponge for efficient oil/water separation at static and dynamic states. Chemical Engineering Journal, 2018, 334, 2154-2166.	12.7	207
25	A Metal-Free Synthesis of 3-Phenoxyimidazo Heterocycles by Catalytic Oxidative Cyclization of 2-Amino-azaarenes with Lignin Models. Synthesis, 2018, 50, 3169-3176.	2.3	10
26	Three-dimensional graphene-based polymer nanocomposites: preparation, properties and applications. Nanoscale, 2018, 10, 14788-14811.	5.6	162
27	A novel and facile strategy for highly flame retardant polymer foam composite materials: Transforming silicone resin coating into silica self-extinguishing layer. Journal of Hazardous Materials, 2017, 336, 222-231.	12.4	87
28	Efficient interfacial interaction for improving mechanical properties of polydimethylsiloxane nanocomposites filled with low content of graphene oxide nanoribbons. RSC Advances, 2017, 7, 22045-22053.	3.6	82
29	Superhydrophobic and Superparamagnetic Composite Coatings: A Comparative Study on Dual-Sized Functional Magnetite Nanoparticles/Silicone Rubber. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 1816-1825.	3.7	6
30	Polymer grafted reduced graphene oxide sheets for improving stress transfer in polymer composites. Composites Science and Technology, 2016, 134, 144-152.	7.8	103
31	Silane bonded graphene aerogels with tunable functionality and reversible compressibility. Carbon, 2016, 107, 573-582.	10.3	83
32	Improved interfacial properties between glass fibers and tetra-functional epoxy resins modified with silica nanoparticles. Fibers and Polymers, 2015, 16, 2056-2065.	2.1	24
33	Fracture Behaviors of TRGO-Filled Epoxy Nanocomposites with Different Dispersion/Interface Levels. Macromolecular Materials and Engineering, 2015, 300, 737-749.	3.6	46
34	Temperature dependence of creep and recovery behaviors of polymer composites filled with chemically reduced graphene oxide. Composites Part A: Applied Science and Manufacturing, 2015, 69, 288-298.	7.6	103