
Xiaoqiang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8139702/publications.pdf Version: 2024-02-01

XIAOOIANG WANG

#	Article	IF	CITATIONS
1	Temperature and strain monitor of COPV by buckypaper and MXene sensor combined flexible printed circuit. International Journal of Hydrogen Energy, 2022, 47, 4211-4221.	3.8	8
2	Evaluation of embedded buckypaper sensors in composite overwrappedped pressure vessels for progressive damage monitoring. Composite Structures, 2022, 284, 115223.	3.1	7
3	Health monitoring of composite pressure vessels through omnidirectional buckypaper sensor array. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	5
4	In situ monitoring of sandwich structure in liquid composite molding process using multifunctional <scp>MXene</scp> / <scp>carbon nanotube</scp> sensors. Polymer Composites, 2022, 43, 2252-2263.	2.3	9
5	Conditionmonitoring of composite overwrap pressure vessels based on buckypaper sensor and MXene sensor. Composites Communications, 2021, 25, 100699.	3.3	10
6	Lifetime health monitoring of fiber reinforced composites using highly flexible and sensitive MXene/CNT film sensor. Sensors and Actuators A: Physical, 2021, 332, 113148.	2.0	17
7	Structure bolt tightening force and loosening monitoring by conductive MXene/FPC pressure sensor with high sensitivity and wide sensing range. Sensors and Actuators A: Physical, 2021, 331, 113005.	2.0	5
8	Strain monitoring using carbon nanotube Buckypaper sensor on composite repaired structure. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	7
9	Health monitoring of composite materials based on BP sensors under complex environments. Micro and Nano Letters, 2020, 15, 18-23.	0.6	0
10	Structural health monitoring for polymer composites with surface printed MXene/ink sensitive sensors. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	9
11	Self-sensing properties of bending deformation of buckypaper composites. Materials Research Express, 2019, 6, 105004.	0.8	5
12	Manufacture and mechanical properties of sandwich structure-battery composites. Journal of Polymer Engineering, 2019, 39, 838-843.	0.6	5
13	Highly sensitive graphene platelets and multi-walled carbon nanotube-based flexible strain sensor for monitoring human joint bending. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	33
14	Preparation of graphene-based sensor and its application in human behavior monitoring. Materials Research Express, 2019, 6, 075613.	0.8	10
15	Multi-direction health monitoring with carbon nanotube film strain sensor. International Journal of Distributed Sensor Networks, 2019, 15, 155014771982968.	1.3	14
16	Real-time monitoring of resin infiltration process in vacuum assisted molding(VARI) of composites with carbon nanotube buckypaper sensor. Materials Research Express, 2019, 6, 115628.	0.8	4
17	In situ monitoring the manufacturing process of polymer composites with highly flexible and sensitive GNP/ MWCNT film sensors. Sensors and Actuators A: Physical, 2019, 285, 127-133.	2.0	6
18	Real-time monitoring of low-velocity impact damage for composite structures with the omnidirection carbon nanotubes' buckypaper sensors. Structural Health Monitoring, 2019, 18, 454-465.	4.3	18

XIAOQIANG WANG

#	Article	IF	CITATIONS
19	Strain sensing behaviors of GnPs/epoxy sensor and health monitoring for composite materials under monotonic tensile and cyclic deformation. Composites Science and Technology, 2018, 158, 94-100.	3.8	36
20	The role of maleic anhydride functionalized graphene oxide in improving the interfacial properties of carbon fibre/bismaleimide composites. Polymer International, 2018, 67, 276-282.	1.6	4
21	Very high S-band microwave absorption of carbon nanotube buckypapers with Mn nanoparticle interlayers. Journal of Applied Physics, 2018, 123, .	1.1	10
22	Electromagnetic interference shielding properties of graphene/MWCNT hybrid buckypaper. Micro and Nano Letters, 2018, 13, 1252-1254.	0.6	6
23	Real time monitoring of the curing degree and the manufacturing process of fiber reinforced composites with a carbon nanotube buckypaper sensor. RSC Advances, 2018, 8, 22078-22085.	1.7	23
24	Researching on X-Band Electromagnetic Interference Shielding Efficiency of MWCNTs Buckypapers Inserted with Mn Nanopowder. Nano, 2018, 13, 1850061.	0.5	1
25	Electrical response of carbon nanotube buckypaper sensor subjected to monotonic tension, cycle tension and temperature. Micro and Nano Letters, 2018, 13, 862-867.	0.6	5
26	Monitoring the glass transition temperature of polymeric composites with carbon nanotube buckypaper sensor. Polymer Testing, 2017, 57, 12-16.	2.3	35
27	Real-time cure behaviour monitoring of polymer composites using a highly flexible and sensitive CNT buckypaper sensor. Composites Science and Technology, 2017, 152, 181-189.	3.8	49
28	Health monitoring for composite materials with high linear and sensitivity GnPs/epoxy flexible strain sensors. Sensors and Actuators A: Physical, 2017, 267, 409-416.	2.0	24
29	Influence of high temperature on the flexural properties of GF/pCBT laminates and their fusion-bonded joints. Composites Part B: Engineering, 2017, 110, 124-131.	5.9	3
30	Fabrication of single/multi-walled hybrid buckypaper composites and their enhancement of electromagnetic interference shielding performance. Journal Physics D: Applied Physics, 2016, 49, 445308.	1.3	14
31	Monitoring the manufacturing process of glass fiber reinforced composites with carbon nanotube buckypaper sensor. Polymer Testing, 2016, 52, 79-84.	2.3	26
32	Micromechanical analysis of long fiberâ€reinforced composites with nanoparticle incorporation into the interphase region. Journal of Applied Polymer Science, 2015, 132, .	1.3	3
33	Fabrication and characterization of polymer composites surface coated <scp>F</scp> e ₃ <scp>O</scp> ₄ / <scp>MWCNT</scp> s hybrid buckypaper as a novel microwaveâ€absorbing structure. Journal of Applied Polymer Science, 2015, 132, .	1.3	14
34	Tensile strain sensing of buckypaper and buckypaper composites. Materials and Design, 2015, 88, 414-419.	3.3	32
35	Preparation, magnetism and microwave absorption performance of ultra-thin Fe3O4/carbon nanotube sandwich buckypaper. Journal of Alloys and Compounds, 2014, 606, 171-176.	2.8	39
36	Finite element simulation of the failure process of single fiber composites considering interface properties. Composites Part B: Engineering, 2013, 45, 573-580.	5.9	35

XIAOQIANG WANG

#	Article	IF	CITATIONS
37	Simulation and analysis of shape memory alloy fiber reinforced composite based on cohesive zone model. Materials & Design, 2012, 40, 138-147.	5.1	39
38	Automatic generation of random distribution of fibers in long-fiber-reinforced composites and mesomechanical simulation. Materials & Design, 2011, 32, 885-891.	5.1	66
39	Effects of interphase properties in unidirectional fiber reinforced composite materials. Materials & Design, 2011, 32, 3486-3492.	5.1	71
40	Health monitoring of composite single lap joints with highly sensitive MWCNTs film sensors. Journal of Adhesion Science and Technology, 0, , 1-18.	1.4	0