Martin F Schneider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8139649/publications.pdf

Version: 2024-02-01

331670 330143 1,473 54 21 37 citations h-index g-index papers 54 54 54 1601 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Voltage sensor movements of CaV1.1 during an action potential in skeletal muscle fibers. Journal of General Physiology, 2022, 154 , .	1.9	1
2	CaMKII oxidation is a critical performance/disease trade-off acquired at the dawn of vertebrate evolution. Nature Communications, 2021, 12, 3175.	12.8	19
3	Voltage sensor movements of CaV1.1 during an action potential in skeletal muscle fibers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2026116118.	7.1	6
4	Mechanoactivation of NOX2-generated ROS elicits persistent TRPM8 Ca $\langle \sup 2+\langle \sup \rangle $ signals that are inhibited by oncogenic KRas. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26008-26019.	7.1	19
5	Alternative signaling pathways from IGF1 or insulin to AKT activation and FOXO1 nuclear efflux in adult skeletal muscle fibers. Journal of Biological Chemistry, 2020, 295, 15292-15306.	3.4	8
6	High Time Resolution Analysis of Voltage-Dependent and Voltage-Independent Calcium Sparks in Frog Skeletal Muscle Fibers. Frontiers in Physiology, 2020, 11, 599822.	2.8	3
7	Disturbed intracellular calcium homeostasis in neural tube defects in diabetic embryopathy. Biochemical and Biophysical Research Communications, 2019, 514, 960-966.	2.1	4
8	Mathematical Modeling of Nuclear Trafficking of FOXO Transcription Factors. Methods in Molecular Biology, 2019, 1890, 205-217.	0.9	1
9	Assessment and site-specific manipulation of DNA (hydroxy-)methylation during mouse corticogenesis. Life Science Alliance, 2019, 2, e201900331.	2.8	20
10	Foxo1 nucleo-cytoplasmic distribution and unidirectional nuclear influx are the same in nuclei in a single skeletal muscle fiber but vary between fibers. American Journal of Physiology - Cell Physiology, 2018, 314, C334-C348.	4.6	3
11	Real-time scratch assay reveals mechanisms of early calcium signaling in breast cancer cells in response to wounding. Oncotarget, 2018, 9, 25008-25024.	1.8	11
12	LRP1 (Low-Density Lipoprotein Receptor–Related Protein 1) Regulates Smooth Muscle Contractility by Modulating Ca ²⁺ Signaling and Expression of Cytoskeleton-Related Proteins. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2651-2664.	2.4	37
13	Voltage sensing mechanism in skeletal muscle excitation-contraction coupling: coming of age or midlife crisis?. Skeletal Muscle, 2018, 8, 22.	4.2	28
14	Loss of S100A1 expression leads to Ca2+ release potentiation in mutant mice with disrupted CaM and S100A1 binding to CaMBD2 of RyR1. Physiological Reports, 2018, 6, e13822.	1.7	3
15	Altered nuclear dynamics in MDX myofibers. Journal of Applied Physiology, 2017, 122, 470-481.	2.5	42
16	The Activation of Protein Kinase A by the Calcium-Binding Protein S100A1 Is Independent of Cyclic AMP. Biochemistry, 2017, 56, 2328-2337.	2.5	10
17	Impaired calcium signaling in muscle fibers from intercostal and foot skeletal muscle in a cigarette smoke-induced mouse model of COPD. Muscle and Nerve, 2017, 56, 282-291.	2.2	12
18	Acute Elevated Glucose Promotes Abnormal Action Potential-Induced Ca2+Transients in Cultured Skeletal Muscle Fibers. Journal of Diabetes Research, 2017, 2017, 1-12.	2.3	6

#	Article	IF	CITATIONS
19	Alternating bipolar field stimulation identifies muscle fibers with defective excitability but maintained local Ca2+ signals and contraction. Skeletal Muscle, 2015, 6, 6.	4.2	11
20	Disruption of action potential and calcium signaling properties in malformed myofibers from dystrophin-deficient mice. Physiological Reports, 2015, 3, e12366.	1.7	21
21	EC Coupling for Muscle Aficionados: Abnormal Contraction and Disrupted Excitability in Some Enzymatically Dissociated Skeletal Muscle Fibers. Biophysical Journal, 2015, 108, 420a.	0.5	1
22	Green tea component EGCG, insulin and IGF-1 promote nuclear efflux of atrophy-associated transcription factor Foxo1 in skeletal muscle fibers. Journal of Nutritional Biochemistry, 2015, 26, 1559-1567.	4.2	21
23	Atypical behavior of NFATc1 in cultured intercostal myofibers. Skeletal Muscle, 2014, 4, 1.	4.2	17
24	Mathematical modeling reveals modulation of both nuclear influx and efflux of Foxo1 by the IGF-I/PI3K/Akt pathway in skeletal muscle fibers. American Journal of Physiology - Cell Physiology, 2014, 306, C570-C584.	4.6	17
25	β1a490–508, a 19-Residue Peptide from C-Terminal Tail of Cav1.1 β1a Subunit, Potentiates Voltage-Dependent Calcium Release in Adult Skeletal Muscle Fibers. Biophysical Journal, 2014, 106, 535-547.	0.5	13
26	Elevated nuclear Foxo1 suppresses excitability of skeletal muscle fibers. American Journal of Physiology - Cell Physiology, 2013, 305, C643-C653.	4.6	8
27	NOX2-dependent ROS is required for HDAC5 nuclear efflux and contributes to HDAC4 nuclear efflux during intense repetitive activity of fast skeletal muscle fibers. American Journal of Physiology - Cell Physiology, 2012, 303, C334-C347.	4.6	29
28	Elevated extracellular glucose and uncontrolled type 1 diabetes enhance NFAT5 signaling and disrupt the transverse tubular network in mouse skeletal muscle. Experimental Biology and Medicine, 2012, 237, 1068-1083.	2.4	19
29	Kinetics of nuclear-cytoplasmic translocation of Foxo1 and Foxo3A in adult skeletal muscle fibers. American Journal of Physiology - Cell Physiology, 2012, 303, C977-C990.	4.6	34
30	Voltage clamp methods for the study of membrane currents and SR Ca2+ release in adult skeletal muscle fibres. Progress in Biophysics and Molecular Biology, 2012, 108, 98-118.	2.9	21
31	A calcium channel mutant mouse model of hypokalemic periodic paralysis. Journal of Clinical Investigation, 2012, 122, 4580-4591.	8.2	94
32	S100A1 and calmodulin regulation of ryanodine receptor in striated muscle. Cell Calcium, 2011, 50, 323-331.	2.4	41
33	Modulation of sarcoplasmic reticulum Ca ²⁺ release in skeletal muscle expressing ryanodine receptor impaired in regulation by calmodulin and S100A1. American Journal of Physiology - Cell Physiology, 2011, 300, C998-C1012.	4.6	33
34	Mice Null for Calsequestrin 1 Exhibit Deficits in Functional Performance and Sarcoplasmic Reticulum Calcium Handling. PLoS ONE, 2011, 6, e27036.	2.5	18
35	Culture methods and initial characterization of intercostal skeletal fibers isolated from the adult mouse. FASEB Journal, 2011, 25, .	0.5	O
36	Foxo1 nuclearâ€eytoplasmic movement in living skeletal muscle. FASEB Journal, 2011, 25, 1051.47.	0.5	0

3

#	Article	IF	CITATIONS
37	S100A1 promotes action potential-initiated calcium release flux and force production in skeletal muscle. American Journal of Physiology - Cell Physiology, 2010, 299, C891-C902.	4.6	22
38	The <i>Q</i> _γ component of intraâ€membrane charge movement is present in mammalian muscle fibres, but suppressed in the absence of S100A1. Journal of Physiology, 2009, 587, 4523-4541.	2.9	30
39	Simultaneous recording of intramembrane charge movement components and calcium release in wildâ€type and S100A1 ^{â^'/â^'} muscle fibres. Journal of Physiology, 2009, 587, 4543-4559.	2.9	25
40	S100A1 and Calmodulin Compete for the Same Binding Site on Ryanodine Receptor. Journal of Biological Chemistry, 2008, 283, 26676-26683.	3.4	106
41	S100A1 Binds to the Calmodulin-binding Site of Ryanodine Receptor and Modulates Skeletal Muscle Excitation-Contraction Coupling. Journal of Biological Chemistry, 2008, 283, 5046-5057.	3.4	90
42	Ca2+ sparks and T tubule reorganization in dedifferentiating adult mouse skeletal muscle fibers. American Journal of Physiology - Cell Physiology, 2007, 292, C1156-C1166.	4.6	39
43	Ca2+ Sparks Detection and Classification using Gaussian-Mexican Hat Wavelet. , 2007, , .		0
44	Peptide and protein modulation of local Ca2+ release events in permeabilized skeletal muscle fibers. Biological Research, 2004, 37, 613-6.	3.4	4
45	Local Ca2+ release events in skeletal muscle. Journal of Muscle Research and Cell Motility, 2004, 25, 587-9.	2.0	2
46	Activity-dependent nuclear translocation and intranuclear distribution of NFATc in adult skeletal muscle fibers. Journal of Cell Biology, 2001, 155, 27-40.	5.2	166
47	Expression of ryanodine receptor RyR3 produces Ca 2+ sparks in dyspedic myotubes. Journal of Physiology, 2000, 525, 91-103.	2.9	48
48	Time Course of Individual Ca2+ Sparks in Frog Skeletal Muscle Recorded at High Time Resolution. Journal of General Physiology, 1999, 113, 187-198.	1.9	59
49	Ca2+ Sparks in Frog Skeletal Muscle: Generation by One, Some, or Many SR Ca2+ Release Channels?. Journal of General Physiology, 1999, 113, 365-372.	1.9	46
50	Caffeine-induced [Ca2+] oscillations in neurones of frog sympathetic ganglia. Journal of Physiology, 1999, 514, 83-99.	2.9	12
51	A repetitive mode of activation of discrete Ca2+release events (Ca2+sparks) in frog skeletal muscle fibres. Journal of Physiology, 1999, 515, 391-411.	2.9	27
52	Numerical Simulation of Ca2+ "Sparks―in Skeletal Muscle. Biophysical Journal, 1999, 77, 2333-2357.	0.5	65
53	Fibre type-specific gene expression activated by chronic electrical stimulation of adult mouse skeletal muscle fibres in culture. Journal of Physiology, 1998, 512, 337-344.	2.9	21
54	Decay of calcium transients after electrical stimulation in rat fast- and slow-twitch skeletal muscle fibres. Journal of Physiology, 1997, 501, 573-588.	2.9	80