Tetsuya Kitaguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/813960/publications.pdf

Version: 2024-02-01

59 papers 2,396 citations

218677 26 h-index 223800 46 g-index

64 all docs

64 docs citations

64 times ranked 3783 citing authors

#	Article	IF	CITATIONS
1	Development of red genetically encoded biosensor for visualization of intracellular glucose dynamics. Cell Chemical Biology, 2022, 29, 98-108.e4.	5.2	14
2	Modulation of Local Cellular Activities using a Photothermal Dye-Based Subcellular-Sized Heat Spot. ACS Nano, 2022, 16, 9004-9018.	14.6	17
3	Development of a Single Fluorescent Protein-Based Green Glucose Indicator by Semirational Molecular Design and Molecular Evolution. Methods in Molecular Biology, 2021, 2274, 89-100.	0.9	2
4	Rapid construction of fluorescence quenching-based immunosensor Q-bodies using \hat{l}_{\pm} -helical coiled-coil peptides. Chemical Communications, 2021, 57, 8206-8209.	4.1	8
5	Simple Fluorogenic Cellular Assay for Histone Deacetylase Inhibitors Based on Split-Yellow Fluorescent Protein and Intrabodies. ACS Omega, 2021, 6, 10039-10046.	3.5	3
6	Construction of Fluorescent Immunosensor Quenchbody to Detect His-Tagged Recombinant Proteins Produced in Bioprocess. Sensors, 2021, 21, 4993.	3.8	4
7	Molecular basis of ubiquitin-specific protease 8 autoinhibition by the WW-like domain. Communications Biology, 2021, 4, 1272.	4.4	6
8	Evaluation and selection of potent fluorescent immunosensors by combining fluorescent peptide and nanobodies displayed on yeast surface. Scientific Reports, 2021, 11, 22590.	3.3	4
9	Graphene Field Effect Transistor-Based Immunosensor for Ultrasensitive Noncompetitive Detection of Small Antigens. ACS Sensors, 2020, 5, 24-28.	7.8	58
10	Green fluorescent protein-based lactate and pyruvate indicators suitable for biochemical assays and live cell imaging. Scientific Reports, 2020, 10, 19562.	3.3	27
11	Creation of a Nanobody-Based Fluorescent Immunosensor Mini Q-body for Rapid Signal-On Detection of Small Hapten Methotrexate. ACS Sensors, 2020, 5, 3457-3464.	7.8	28
12	Polymorphic Region-Specific Antibody for Evaluation of Affinity-Associated Profile of Chimeric Antigen Receptor. Molecular Therapy - Oncolytics, 2020, 17, 293-305.	4.4	1
13	PM Q-probe: A fluorescent binding protein that converts many antibodies to a fluorescent biosensor. Biosensors and Bioelectronics, 2020, 165, 112425.	10.1	16
14	Distinct temporal integration of noradrenaline signaling by astrocytic second messengers during vigilance. Nature Communications, 2020, 11, 471.	12.8	102
15	Glutamine-induced signaling pathways via amino acid receptors in enteroendocrine L cell lines. Journal of Molecular Endocrinology, 2020, 64, 133-143.	2.5	15
16	Sonic hedgehog enhances calcium oscillations in hippocampal astrocytes. Journal of Biological Chemistry, 2019, 294, 16034-16048.	3.4	11
17	Creation of stable and strictly regulated enzyme switch for signal-on immunodetection of various small antigens. Journal of Bioscience and Bioengineering, 2019, 128, 677-682.	2.2	9
18	Green Fluorescent Protein-Based Glucose Indicators Report Glucose Dynamics in Living Cells. Analytical Chemistry, 2019, 91, 4821-4830.	6.5	47

#	Article	IF	CITATIONS
19	Transmembrane signaling on a protocell: Creation of receptor-enzyme chimeras for immunodetection of specific antibodies and antigens. Scientific Reports, 2019, 9, 18189.	3.3	9
20	A novel FRET analysis method for tension dynamics in a single actin stress fiber: Application to MC3T3-E1 cells during movement on a substrate. Journal of Biorheology, 2019, 33, 21-26.	0.5	1
21	Noncompetitive homogeneous immunodetection of small molecules based on beta-glucuronidase complementation. Analyst, The, 2018, 143, 2096-2101.	3.5	12
22	RGBâ€Color Intensiometric Indicators to Visualize Spatiotemporal Dynamics of ATP in Single Cells. Angewandte Chemie - International Edition, 2018, 57, 10873-10878.	13.8	78
23	RGBâ€Color Intensiometric Indicators to Visualize Spatiotemporal Dynamics of ATP in Single Cells. Angewandte Chemie, 2018, 130, 11039-11044.	2.0	6
24	Optical visualisation of thermogenesis in stimulated single-cell brown adipocytes. Scientific Reports, 2017, 7, 1383.	3.3	77
25	Flashbody: A Next Generation Fluobody with Fluorescence Intensity Enhanced by Antigen Binding. Analytical Chemistry, 2017, 89, 6719-6725.	6.5	44
26	Lysophosphatidylinositol-induced activation of the cation channel TRPV2 triggers glucagon-like peptide-1 secretion in enteroendocrine L cells. Journal of Biological Chemistry, 2017, 292, 10855-10864.	3.4	29
27	Generation of a cGMP Indicator with an Expanded Dynamic Range by Optimization of Amino Acid Linkers between a Fluorescent Protein and PDE5α. ACS Sensors, 2017, 2, 46-51.	7.8	35
28	Red fluorescent protein-based cAMP indicator applicable to optogenetics and in vivo imaging. Scientific Reports, 2017, 7, 7351.	3.3	117
29	Ca2+-associated triphasic pH changes in mitochondria during brown adipocyte activation. Molecular Metabolism, 2017, 6, 797-808.	6.5	19
30	Observations of intracellular tension dynamics of MC3T3-E1 cells during substrate adhesion using a FRET-based actinin tension sensor. Journal of Biomechanical Science and Engineering, 2016, 11, 16-00504-16-00504.	0.3	3
31	Wide and high resolution tension measurement using FRET in embryo. Scientific Reports, 2016, 6, 28535.	3.3	37
32	Positive Allosteric Modulation of the Calcium-sensing Receptor by Physiological Concentrations of Glucose. Journal of Biological Chemistry, 2016, 291, 23126-23135.	3.4	25
33	Intracellular bottom-up generation of targeted nanosensors for single-molecule imaging. Nanoscale, 2016, 8, 3218-3225.	5.6	5
34	Integrative function of adrenaline receptors for glucagon-like peptide-1 exocytosis in enteroendocrine L cell line GLUTag. Biochemical and Biophysical Research Communications, 2015, 460, 1053-1058.	2.1	13
35	Low glucose-induced ghrelin secretion is mediated by an ATP-sensitive potassium channel. Journal of Endocrinology, 2015, 226, 25-34.	2.6	10
36	Genetically-Encoded Yellow Fluorescent cAMP Indicator with an Expanded Dynamic Range for Dual-Color Imaging. PLoS ONE, 2014, 9, e100252.	2.5	98

#	Article	IF	Citations
37	Vesicular nucleotide transporter is involved in ATP storage of secretory lysosomes in astrocytes. Biochemical and Biophysical Research Communications, 2013, 438, 145-151.	2.1	54
38	Extracellular calcium influx activates adenylate cyclase 1 and potentiates insulin secretion in MIN6 cells. Biochemical Journal, 2013, 450, 365-373.	3.7	72
39	Visualization of an endogenous retinoic acid gradient across embryonic development. Nature, 2013, 496, 363-366.	27.8	190
40	The G Protein-coupled Receptor Family C Group 6 Subtype A (GPRC6A) Receptor Is Involved in Amino Acid-induced Glucagon-like Peptide-1 Secretion from GLUTag Cells. Journal of Biological Chemistry, 2013, 288, 4513-4521.	3.4	125
41	The small GTPase Cdc42 modulates the number of exocytosis-competent dense-core vesicles in PC12 cells. Biochemical and Biophysical Research Communications, 2012, 420, 417-421.	2.1	12
42	Release of TNFâ€ α from macrophages is mediated by small GTPase Rab37. European Journal of Immunology, 2011, 41, 3230-3239.	2.9	43
43	Duration of fusion pore opening and the amount of hormone released are regulated by myosin II during kiss-and-run exocytosis. Biochemical Journal, 2010, 429, 497-504.	3.7	50
44	Age-dependent Preferential Dense-Core Vesicle Exocytosis in Neuroendocrine Cells Revealed by Newly Developed Monomeric Fluorescent Timer Protein. Molecular Biology of the Cell, 2010, 21, 87-94.	2.1	39
45	Illuminating cell-cycle progression in the developing zebrafish embryo. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20812-20817.	7.1	205
46	Transcriptional regulation of a myeloid-lineage specific gene lysozyme C during zebrafish myelopoiesis. Mechanisms of Development, 2009, 126, 314-323.	1.7	45
47	Myosin II modulates a size of exocytotic fusion pore in neuroendocrine cells. Neuroscience Research, 2009, 65, S220-S221.	1.9	0
48	IP3 Receptor Types 2 and 3 Mediate Exocrine Secretion Underlying Energy Metabolism. Science, 2005, 309, 2232-2234.	12.6	285
49	An Inhibitor of TRPV1 Channels Isolated from Funnel Web Spider Venomâ€. Biochemistry, 2005, 44, 15544-15549.	2.5	67
50	Stabilizing the Closed S6 Gate in the Shaker K v Channel Through Modification of a Hydrophobic Seal. Journal of General Physiology, 2004, 124, 319-332.	1.9	63
51	Xenopus Brachyury regulates mesodermal expression of Zic3, a gene controlling left-right asymmetry. Development Growth and Differentiation, 2002, 44, 55-61.	1.5	35
52	Xenopus Polycomblike 2 (XPcl2) controls anterior to posterior patterning of the neural tissue. Development Genes and Evolution, 2001, 211, 309-314.	0.9	16
53	Characterization of Liposomes Carrying von Willebrand Factor-Binding Domain of Platelet Glycoprotein Ibα: A Potential Substitute for Platelet Transfusion. Biochemical and Biophysical Research Communications, 1999, 261, 784-789.	2.1	28
54	Characterization of cDNA encoding full-length mouse platelet glycoprotein IX. Blood Coagulation and Fibrinolysis, 1998, 9, 381-386.	1.0	4

#	Article	IF	CITATIONS
55	High Shear Stress Attenuates Agonist-Induced, Glycoprotein IIb/IIIa-Mediated Platelet Aggregation When von Willebrand Factor Binding to Glycoprotein Ib/IX Is Blocked. Biochemical and Biophysical Research Communications, 1997, 233, 796-800.	2.1	10
56	CHARACTERIZATION OF THE GENE ENCODING MOUSE PLATELET GLYCOPROTEIN $lb\hat{l}^2$ 1 1The nucleotide sequence data reported in this paper will appear in the DDBJ, EMBL and GenBank nucleotide sequence databases with the accession number AB001419 Thrombosis Research, 1997, 87, 235-244.	1.7	7
57	Expression and Functional Characterization of an Abnormal Platelet Membrane Glycoprotein Ibα (Met239 → Val) Reported in Patients With Platelet-Type von Willebrand Disease. Blood, 1997, 90, 698-705.	1.4	40
58	Expression and Functional Characterization of an Abnormal Platelet Membrane Glycoprotein Ibα (Met239 → Val) Reported in Patients With Platelet-Type von Willebrand Disease. Blood, 1997, 90, 698-705.	1.4	1
59	Establishment and Characterization of Transgenic Mice Expressing Human Platelet Glycoprotein Ibα. Biochemical and Biophysical Research Communications, 1996, 220, 418-424.	2.1	2