Alan Storey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8139506/publications.pdf

Version: 2024-02-01

218381 223531 3,316 46 26 46 h-index citations g-index papers 47 47 47 2960 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Human papillomavirus type 8 oncoproteins E6 and E7 cooperate in downregulation of the cellular checkpoint kinaseâ€1. International Journal of Cancer, 2019, 145, 797-806.	2.3	11
2	Human papillomavirus mediated inhibition of DNA damage sensing and repair drives skin carcinogenesis. Molecular Cancer, 2015, 14, 183.	7.9	56
3	BMX Negatively Regulates BAK Function, Thereby Increasing Apoptotic Resistance to Chemotherapeutic Drugs. Cancer Research, 2015, 75, 1345-1355.	0.4	30
4	Resistance to UVâ€induced apoptosis by βâ€HPV5 E6 involves targeting of activated BAK for proteolysis by recruitment of the HERC1 ubiquitin ligase. International Journal of Cancer, 2015, 136, 2831-2843.	2.3	38
5	Chk1 activity is required for BAK multimerization in association with PUMA during mitochondrial apoptosis. Cell Communication and Signaling, 2014, 12, 42.	2.7	3
6	A conserved C-terminal sequence of high-risk cutaneous beta-human papillomavirus E6 proteins alters localization and signalling of \hat{l}^21 -integrin to promote cell migration. Journal of General Virology, 2014, 95, 123-134.	1.3	10
7	BAK multimerization for apoptosis, but not bid binding, is inhibited by negatively charged residue in the BAK hydrophobic groove. Molecular Cancer, 2013, 12, 65.	7.9	5
8	Expression of Betapapillomavirus Oncogenes Increases the Number of Keratinocytes with Stem Cell-Like Properties. Journal of Virology, 2013, 87, 12158-12165.	1.5	52
9	A Humanized Mouse Model of HPV-Associated Pathology Driven by E7 Expression. PLoS ONE, 2012, 7, e41743.	1.1	23
10	Blockade of the BAK Hydrophobic Groove by Inhibitory Phosphorylation Regulates Commitment to Apoptosis. PLoS ONE, 2012, 7, e49601.	1.1	11
11	α6 Integrin and CD44 Enrich for a Primary Keratinocyte Population That Displays Resistance to UV-Induced Apoptosis. PLoS ONE, 2012, 7, e46968.	1.1	9
12	Cutaneous Squamous Cell Carcinoma (SCC) and the DNA Damage Response: pATM Expression Patterns in Pre-Malignant and Malignant Keratinocyte Skin Lesions. PLoS ONE, 2011, 6, e21271.	1.1	17
13	The E2 protein of human papillomavirus type 8 increases the expression of matrix metalloproteinase-9 in human keratinocytes and organotypic skin cultures. Medical Microbiology and Immunology, 2011, 200, 127-135.	2.6	17
14	Upregulation of lipocalin-2 in human papillomavirus-positive keratinocytes and cutaneous squamous cell carcinomas. Journal of General Virology, 2011, 92, 395-401.	1.3	15
15	"Licensed to kill". Cell Cycle, 2011, 10, 598-603.	1.3	8
16	Axl Promotes Cutaneous Squamous Cell Carcinoma Survival through Negative Regulation of Pro-Apoptotic Bcl-2 Family Members. Journal of Investigative Dermatology, 2011, 131, 509-517.	0.3	29
17	Tyrosine dephosphorylation is required for Bak activation in apoptosis. EMBO Journal, 2010, 29, 3853-3868.	3.5	39
18	Human papillomavirus 5 and 8 E6 downregulate interleukin-8 secretion in primary human keratinocytes. Journal of General Virology, 2010, 91, 888-892.	1.3	26

#	Article	IF	Citations
19	Cutaneous HPV5 E6 causes increased expression of Osteoprotegerin and Interleukin 6 which contribute to evasion of UV-induced apoptosis. Carcinogenesis, 2010, 31, 2155-2164.	1.3	18
20	Increased invasive behaviour in cutaneous squamous cell carcinoma with loss of basement-membrane type VII collagen. Journal of Cell Science, 2009, 122, 1788-1799.	1.2	94
21	Proteomic analysis reveals the actin cytoskeleton as cellular target for the human papillomavirus type 8. Virology, 2009, 386, 1-5.	1.1	12
22	Interaction Between Ultraviolet Radiation and Human Papillomavirus. Cancer Treatment and Research, 2009, 146, 159-167.	0.2	3
23	Identification of the regions of the HPV 5 E6 protein involved in Bak degradation and inhibition of apoptosis. International Journal of Cancer, 2008, 123, 2260-2266.	2.3	32
24	Thiothymidine plus low-dose UVA kills hyperproliferative human skin cells independently of their human papilloma virus status. Molecular Cancer Therapeutics, 2007, 6, 2487-2495.	1.9	22
25	Cutaneous Human Papillomaviruses Down-regulate AKT1, whereas AKT2 Up-regulation and Activation Associates with Tumors. Cancer Research, 2007, 67, 8207-8215.	0.4	37
26	A distinct variant of Epidermodysplasia verruciformis in a Turkish family lacking EVER1 and EVER2 mutations. Journal of Dermatological Science, 2007, 46, 214-216.	1.0	27
27	HPV8 early genes modulate differentiation and cell cycle of primary human adult keratinocytes. Experimental Dermatology, 2007, 16, 590-599.	1.4	49
28	Role of HPV E6 proteins in preventing UVB-induced release of pro-apoptotic factors from the mitochondria. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 549-560.	2.2	73
29	HPV-associated skin disease. Journal of Pathology, 2006, 208, 165-175.	2.1	205
30	Ultra-deformable liposomes containing bleomycin: In vitro stability and toxicity on human cutaneous keratinocyte cell lines. International Journal of Pharmaceutics, 2005, 300, 4-12.	2.6	37
31	The E7 Protein of Cutaneous Human Papillomavirus Type 8 Causes Invasion of Human Keratinocytes into the Dermis in Organotypic Cultures of Skin. Cancer Research, 2005, 65, 2216-2223.	0.4	86
32	Human papillomavirus type 77 E6 protein selectively inhibits p53-dependent transcription of proapoptotic genes following UV-B irradiation. Oncogene, 2004, 23, 5864-5870.	2.6	37
33	A Comparison Study of Gastric Cancer Risk in Patients with Duodenal and Gastric Ulcer: Roles of Gastric Mucosal Histology and p53 Codon 72 Polymorphism. Digestive Diseases and Sciences, 2004, 49, 254-259.	1.1	14
34	Age-associated increase of codon 72 Arginine p53 frequency in gastric cardia and non-cardia adenocarcinoma. Clinical Cancer Research, 2003, 9, 2151-6.	3.2	31
35	Papillomaviruses: death-defying acts in skin cancer. Trends in Molecular Medicine, 2002, 8, 417-421.	3.5	19
36	Relationship Between p53 Codon 72 Polymorphism and Susceptibility to Sunburn and Skin Cancer. Journal of Investigative Dermatology, 2002, 119, 84-90.	0.3	83

ALAN STOREY

#	Article	IF	CITATION
37	p53 polymorphism in codon 72 and risk of human papillomavirus-induced cervical cancer: effect of inter-laboratory variation. International Journal of Cancer, 2000, 87, 528-533.	2.3	90
38	E6 proteins from diverse cutaneous HPV types inhibit apoptosis in response to UV damage. Oncogene, 2000, 19, 592-598.	2.6	194
39	Role of Bak in UV-induced apoptosis in skin cancer and abrogation by HPV E6 proteins. Genes and Development, 2000, 14, 3065-3073.	2.7	284
40	Role of a p53 polymorphism in the development of human papilloma-virus-associated cancer. Nature, 1998, 393, 229-234.	13.7	897
41	p53 polymorphism and risk of cervical cancer. Nature, 1998, 396, 532-532.	13.7	9
42	p53 codon 72 polymorphism and risk of cervical cancer in UK. Lancet, The, 1998, 352, 871-872.	6.3	187
43	The Human Papillomavirus Type 16 E5 Gene Cooperates with the E7 Gene to Stimulate Proliferation of Primary Cells and Increases Viral Gene Expression. Virology, 1994, 203, 73-80.	1.1	131
44	Anti-sense phosphorothioate oligonucleotides have both specific and non-specific effects on cells containing human papillomavirus type 16. Nucleic Acids Research, 1991, 19, 4109-4114.	6.5	73
45	Complete nucleotide sequence ofrecD, the structural gene for the α subunit of Exonuclease V ofEscherichia coli. Nucleic Acids Research, 1986, 14, 8583-8594.	6. 5	87
46	Complete nucleotide sequence of theEscherichia coli recBgene. Nucleic Acids Research, 1986, 14, 8573-8582.	6.5	86