Sujin Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/813945/publications.pdf

Version: 2024-02-01

	758635	940134
364	12	16
citations	h-index	g-index
	1.0	40.0
19	19	493
docs citations	times ranked	citing authors
	citations 19	364 12 citations h-index 19 19

#	Article	IF	CITATIONS
1	CFTR Activator Increases Intestinal Fluid Secretion and Normalizes Stool Output in a Mouse Model of Constipation. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 317-327.	2.3	60
2	Benzopyrimidoâ€pyrroloâ€oxazineâ€dione CFTR inhibitor (R)â€BPOâ€27 for antisecretory therapy of diarrheas caused by bacterial enterotoxins. FASEB Journal, 2017, 31, 751-760.	0.2	43
3	SLC26A3 inhibitor identified in small molecule screen blocks colonic fluid absorption and reduces constipation. JCI Insight, 2018, 3, .	2.3	36
4	Substituted 2-Acylaminocycloalkylthiophene-3-carboxylic Acid Arylamides as Inhibitors of the Calcium-Activated Chloride Channel Transmembrane Protein 16A (TMEM16A). Journal of Medicinal Chemistry, 2017, 60, 4626-4635.	2.9	31
5	High-Potency Phenylquinoxalinone Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Activators. Journal of Medicinal Chemistry, 2017, 60, 2401-2410.	2.9	27
6	Experimental Evaluation of Proposed Small-Molecule Inhibitors of Water Channel Aquaporin-1. Molecular Pharmacology, 2016, 89, 686-693.	1.0	23
7	Salt-sparing diuretic action of a water-soluble urea analog inhibitor of urea transporters UT-A and UT-B in rats. Kidney International, 2015, 88, 311-320.	2.6	19
8	Diuresis and reduced urinary osmolality in rats produced by smallâ€molecule UTâ€Aâ€selective urea transport inhibitors. FASEB Journal, 2014, 28, 3878-3890.	0.2	18
9	Nanomolar-Potency 1,2,4-Triazoloquinoxaline Inhibitors of the Kidney Urea Transporter UT-A1. Journal of Medicinal Chemistry, 2018, 61, 3209-3217.	2.9	18
10	Nanomolar-Potency Aminophenyl-1,3,5-triazine Activators of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Chloride Channel for Prosecretory Therapy of Dry Eye Diseases. Journal of Medicinal Chemistry, 2017, 60, 1210-1218.	2.9	16
11	Structure-activity analysis of thiourea analogs as inhibitors of UT-A and UT-B urea transporters. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1075-1080.	1.4	14
12	4,8-Dimethylcoumarin Inhibitors of Intestinal Anion Exchanger slc26a3 (Downregulated in Adenoma) for Anti-Absorptive Therapy of Constipation. Journal of Medicinal Chemistry, 2019, 62, 8330-8337.	2.9	14
13	Discovery, synthesis and structure–activity analysis of symmetrical 2,7-disubstituted fluorenones as urea transporter inhibitors. MedChemComm, 2015, 6, 1278-1284.	3.5	13
14	Nanomolar Potency Aminophenyltriazine CFTR Activator Reverses Corneal Epithelial Injury in a Mouse Model of Dry Eye. Journal of Ocular Pharmacology and Therapeutics, 2020, 36, 147-153.	0.6	9
15	Small-molecule inhibitor of intestinal anion exchanger SLC26A3 for treatment of hyperoxaluria and nephrolithiasis. JCI Insight, 2022, 7, .	2.3	8
16	Pro-Secretory Activity and Pharmacology in Rabbits of an Aminophenyl-1,3,5-Triazine CFTR Activator for Dry Eye Disorders., 2017, 58, 4506.		7
17	Hollow Micropillar Array Method for High-Capacity Drug Screening on Filter-Grown Epithelial Cells. Analytical Chemistry, 2018, 90, 7675-7681.	3.2	7
18	Telemedicine Use Among Physiatrists During the Early Phase of the COVID-19 Pandemic and Potential for Future Use. Telemedicine Journal and E-Health, 2023, 29, 242-252.	1.6	1