Jeffrey D Rothstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8139443/publications.pdf

Version: 2024-02-01

		11235	11608
147	38,377	73	140
papers	citations	h-index	g-index
153	153	153	33321
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Answer ALS, a large-scale resource for sporadic and familial ALS combining clinical and multi-omics data from induced pluripotent cell lines. Nature Neuroscience, 2022, 25, 226-237.	7.1	66
2	Nuclear pore complexes — a doorway to neural injury in neurodegeneration. Nature Reviews Neurology, 2022, 18, 348-362.	4.9	33
3	Effect of sodium phenylbutyrate/taurursodiol on tracheostomy/ventilation-free survival and hospitalisation in amyotrophic lateral sclerosis: long-term results from the CENTAUR trial. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 871-875.	0.9	37
4	Longâ€ŧerm survival of participants in the <scp>CENTAUR</scp> trial of sodium phenylbutyrateâ€ŧaurursodiol in <scp>amyotrophic lateral sclerosis</scp> . Muscle and Nerve, 2021, 63, 31-39.	1.0	115
5	MCT1 Deletion in Oligodendrocyte Lineage Cells Causes Late-Onset Hypomyelination and Axonal Degeneration. Cell Reports, 2021, 34, 108610.	2.9	65
6	Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience, 2021, 24, 312-325.	7.1	1,098
7	Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature, 2021, 591, 645-651.	13.7	492
8	UPF1 reduces C9orf72 HRE-induced neurotoxicity in the absence of nonsense-mediated decay dysfunction. Cell Reports, 2021, 34, 108925.	2.9	14
9	Nuclear lamina invaginations are not a pathological feature of C9orf72 ALS/FTD. Acta Neuropathologica Communications, 2021, 9, 45.	2.4	6
10	Increased synthesis of pro-inflammatory cytokines in C9ORF72 patients. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, 22, 517-527.	1.1	13
11	A Helicase Unwinds Hexanucleotide Repeat RNA G-Quadruplexes and Facilitates Repeat-Associated Non-AUG Translation. Journal of the American Chemical Society, 2021, 143, 7368-7379.	6.6	43
12	MC-100093, a Novel <i>β</i> -Lactam Glutamate Transporter-1 Enhancer Devoid of Antimicrobial Properties, Attenuates Cocaine Relapse in Rats. Journal of Pharmacology and Experimental Therapeutics, 2021, 378, 51-59.	1.3	6
13	Nuclear accumulation of CHMP7 initiates nuclear pore complex injury and subsequent TDP-43 dysfunction in sporadic and familial ALS. Science Translational Medicine, 2021, 13, .	5.8	68
14	RNA Is a Double-Edged Sword in ALS Pathogenesis. Frontiers in Cellular Neuroscience, 2021, 15, 708181.	1.8	14
15	The ESCRT-III protein VPS4, but not CHMP4B or CHMP2B, is pathologically increased in familial and sporadic ALS neuronal nuclei. Acta Neuropathologica Communications, 2021, 9, 127.	2.4	11
16	Nuclear export and translation of circular repeat-containing intronic RNA in C9ORF72-ALS/FTD. Nature Communications, 2021, 12, 4908.	5.8	41
17	Association of Variants in the <i>SPTLC1</i> Gene With Juvenile Amyotrophic Lateral Sclerosis. JAMA Neurology, 2021, 78, 1236.	4.5	46
18	Macrophage monocarboxylate transporter 1 promotes peripheral nerve regeneration after injury in mice. Journal of Clinical Investigation, 2021, 131, .	3.9	29

#	Article	IF	CITATIONS
19	Nuclei Isolation and Super-Resolution Structured Illumination Microscopy for Examining Nucleoporin Alterations in Human Neurodegeneration. Journal of Visualized Experiments, 2021, , .	0.2	Ο
20	An integrated multi-omic analysis of iPSC-derived motor neurons from C9ORF72 ALS patients. IScience, 2021, 24, 103221.	1.9	27
21	Ribonuclease recruitment using a small molecule reduced c9ALS/FTD r(G ₄ C ₂) Tj ETQ	∑զ1_1_0.78 5.8	34314 rgBT /O
22	Polyadenylated RNA and RNA-Binding Proteins Exhibit Unique Response to Hyperosmotic Stress. Frontiers in Cell and Developmental Biology, 2021, 9, 809859.	1.8	1
23	Monocarboxylate transporter 1 in Schwann cells contributes to maintenance of sensory nerve myelination during aging. Glia, 2020, 68, 161-177.	2.5	46
24	Hydrogen peroxide triggers an increase in cell surface expression of system xcâ^' in cultured human glioma cells. Neurochemistry International, 2020, 134, 104648.	1.9	4
25	Antibody Therapy Targeting RAN Proteins Rescues C9 ALS/FTD Phenotypes in C9orf72 Mouse Model. Neuron, 2020, 105, 645-662.e11.	3.8	70
26	Absence of Survival and Motor Deficits in 500 Repeat C9ORF72 BAC Mice. Neuron, 2020, 108, 775-783.e4.	3.8	33
27	G4C2 Repeat RNA Initiates a POM121-Mediated Reduction in Specific Nucleoporins in C9orf72 ALS/FTD. Neuron, 2020, 107, 1124-1140.e11.	3.8	88
28	Astrocyte Diversity: Current Insights and Future Directions. Neurochemical Research, 2020, 45, 1298-1305.	1.6	47
29	Amyotrophic lateral sclerosis care and research in the United States during the <scp>COVID</scp> â€19 pandemic: Challenges and opportunities. Muscle and Nerve, 2020, 62, 182-186.	1.0	42
30	Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors. Neuron, 2020, 106, 37-65.e5.	3.8	109
31	C9orf72 arginine-rich dipeptide repeat proteins disrupt karyopherin-mediated nuclear import. ELife, 2020, 9, .	2.8	91
32	TFEB/Mitf links impaired nuclear import to autophagolysosomal dysfunction in C9-ALS. ELife, 2020, 9, .	2.8	48
33	The role of mutations associated with familial neurodegenerative disorders on blood–brain barrier function in an iPSC model. Fluids and Barriers of the CNS, 2019, 16, 20.	2.4	51
34	FGF family members differentially regulate maturation and proliferation of stem cell-derived astrocytes. Scientific Reports, 2019, 9, 9610.	1.6	29
35	CRISPR-Cas9 Screens Identify the RNA Helicase DDX3X as a Repressor of C9ORF72 (GGGGCC)n Repeat-Associated Non-AUG Translation. Neuron, 2019, 104, 885-898.e8.	3.8	107
36	Molecularly defined cortical astroglia subpopulation modulates neurons via secretion of Norrin. Nature Neuroscience, 2019, 22, 741-752.	7.1	64

#	Article	IF	CITATIONS
37	Aberrant deposition of stress granule-resident proteins linked to C9orf72-associated TDP-43 proteinopathy. Molecular Neurodegeneration, 2019, 14, 9.	4.4	111
38	Analyzing progression of motor and speech impairment in ALS. , 2019, 2019, 6097-6102.		5
39	Stress Granule Assembly Disrupts Nucleocytoplasmic Transport. Cell, 2018, 173, 958-971.e17.	13.5	303
40	The Library of Integrated Network-Based Cellular Signatures NIH Program: System-Level Cataloging of Human Cells Response to Perturbations. Cell Systems, 2018, 6, 13-24.	2.9	327
41	Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 2018, 97, 1268-1283.e6.	3.8	517
42	Cortical astroglia undergo transcriptomic dysregulation in the G93A SOD1 ALS mouse model. Journal of Neurogenetics, 2018, 32, 322-335.	0.6	15
43	Tau Protein Disrupts Nucleocytoplasmic Transport in Alzheimer's Disease. Neuron, 2018, 99, 925-940.e7.	3.8	302
44	Loss of cerebellar glutamate transporters EAAT4 and GLAST differentially affects the spontaneous firing pattern and survival of Purkinje cells. Human Molecular Genetics, 2018, 27, 2614-2627.	1.4	22
45	Motor neuron-derived microRNAs cause astrocyte dysfunction in amyotrophic lateral sclerosis. Brain, 2018, 141, 2561-2575.	3.7	50
46	c9orf72 Disease-Related Foci Are Each Composed of One Mutant Expanded Repeat RNA. Cell Chemical Biology, 2017, 24, 141-148.	2.5	29
47	Mutant Huntingtin Disrupts the Nuclear Pore Complex. Neuron, 2017, 94, 93-107.e6.	3.8	274
48	Poly(GP) proteins are a useful pharmacodynamic marker for <i>C9ORF72</i> -associated amyotrophic lateral sclerosis. Science Translational Medicine, 2017, 9, .	5.8	179
49	Astroglial transcriptome dysregulation in early disease of an ALS mutant SOD1 mouse model. Journal of Neurogenetics, 2017, 31, 37-48.	0.6	15
50	Edaravone: A new drug approved for ALS. Cell, 2017, 171, 725.	13.5	150
51	3D Printer Generated Tissue iMolds for Cleared Tissue Using Single- and Multi-Photon Microscopy for Deep Tissue Evaluation. Biological Procedures Online, 2017, 19, 7.	1.4	3
52	Concordant but Varied Phenotypes among Duchenne Muscular Dystrophy Patient-Specific Myoblasts Derived using a Human iPSC-Based Model. Cell Reports, 2016, 15, 2301-2312.	2.9	141
53	The expanding biology of the C9orf72 nucleotide repeat expansion in neurodegenerative disease. Nature Reviews Neuroscience, 2016, 17, 383-395.	4.9	173
54	C9ORF72 -ALS/FTD: Transgenic Mice Make a Come-BAC. Neuron, 2016, 90, 427-431.	3.8	16

#	Article	IF	CITATIONS
55	The astrocytic transporter SLC7A10 (Asc-1) mediates glycinergic inhibition of spinal cord motor neurons. Scientific Reports, 2016, 6, 35592.	1.6	34
56	Posterior cerebellar Purkinje cells in an SCA5/SPARCA1 mouse model are especially vulnerable to the synergistic effect of loss of β-III spectrin and GLAST. Human Molecular Genetics, 2016, 25, ddw274.	1.4	21
57	Motor neuron disease, TDP-43 pathology, and memory deficits in mice expressing ALS–FTD-linked <i>UBQLN2</i> mutations. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7580-E7589.	3.3	77
58	The transcription factor Pax6 contributes to the induction of GLTâ€1 expression in astrocytes through an interaction with a distal enhancer element. Journal of Neurochemistry, 2016, 136, 262-275.	2.1	28
59	C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nature Neuroscience, 2016, 19, 668-677.	7.1	268
60	Generation of <scp>GFAP::GFP</scp> astrocyte reporter lines from human adult fibroblastâ€derived i <scp>PS</scp> cells using zincâ€finger nuclease technology. Glia, 2016, 64, 63-75.	2.5	26
61	Astroglia in Thick Tissue with Super Resolution and Cellular Reconstruction. PLoS ONE, 2016, 11, e0160391.	1.1	21
62	Stereotyped spatial patterns of functional synaptic connectivity in the cerebellar cortex. ELife, 2016, 5, .	2.8	61
63	Rodent Models of Amyotrophic Lateral Sclerosis. Current Protocols in Pharmacology, 2015, 69, 5.67.1-5.67.21.	4.0	209
64	A Comprehensive Library of Familial Human Amyotrophic Lateral Sclerosis Induced Pluripotent Stem Cells. PLoS ONE, 2015, 10, e0118266.	1.1	45
65	Human endogenous retrovirus-K contributes to motor neuron disease. Science Translational Medicine, 2015, 7, 307ra153.	5.8	369
66	The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature, 2015, 525, 56-61.	13.7	835
67	ISDN2014_0027: REMOVED: Identification of a unique molecular and functional microglia signature in health and disease. International Journal of Developmental Neuroscience, 2015, 47, 5-5.	0.7	1
68	Deficiency in monocarboxylate transporter 1 (MCT1) in mice delays regeneration of peripheral nerves following sciatic nerve crush. Experimental Neurology, 2015, 263, 325-338.	2.0	71
69	Safety, Pharmacokinetic, and Functional Effects of the Nogo-A Monoclonal Antibody in Amyotrophic Lateral Sclerosis: A Randomized, First-In-Human Clinical Trial. PLoS ONE, 2014, 9, e97803.	1.1	45
70	Mitochondrial abnormalities and low grade inflammation are present in the skeletal muscle of a minority of patients with amyotrophic lateral sclerosis; an observational myopathology study. Acta Neuropathologica Communications, 2014, 2, 165.	2.4	40
71	C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature, 2014, 507, 195-200.	13.7	779
72	Identification of a unique TGF-β–dependent molecular and functional signature in microglia. Nature Neuroscience, 2014, 17, 131-143.	7.1	2,056

#	Article	IF	CITATIONS
73	Efficacy of local polymer-based and systemic delivery of the anti-glutamatergic agents riluzole and memantine in rat glioma models. Journal of Neurosurgery, 2014, 120, 854-863.	0.9	21
74	Discovery of a Biomarker and Lead Small Molecules to Target r(GGGGCC)-Associated Defects in c9FTD/ALS. Neuron, 2014, 83, 1043-1050.	3.8	289
75	Advances in treating amyotrophic lateral sclerosis: insights from pathophysiological studies. Trends in Neurosciences, 2014, 37, 433-442.	4.2	186
76	An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurology, The, 2013, 12, 435-442.	4.9	534
77	Human Stem Cell-Derived Spinal Cord Astrocytes with Defined Mature or Reactive Phenotypes. Cell Reports, 2013, 4, 1035-1048.	2.9	175
78	RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention. Neuron, 2013, 80, 415-428.	3.8	785
79	Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nature Neuroscience, 2013, 16, 571-579.	7.1	485
80	Increased expression of glutamate transporter GLT-1 in peritumoral tissue associated with prolonged survival and decreases in tumor growth in a rat model of experimental malignant glioma. Journal of Neurosurgery, 2013, 119, 878-886.	0.9	24
81	RAN proteins and RNA foci from antisense transcripts in <i>C9ORF72</i> ALS and frontotemporal dementia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4968-77.	3.3	681
82	Multimodal Actions of Neural Stem Cells in a Mouse Model of ALS: A Meta-Analysis. Science Translational Medicine, 2012, 4, 165ra164.	5.8	91
83	Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature, 2012, 487, 443-448.	13.7	1,287
84	A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD. Neuron, 2011, 72, 257-268.	3.8	3,833
85	Harmine, a natural beta-carboline alkaloid, upregulates astroglial glutamate transporter expression. Neuropharmacology, 2011, 60, 1168-1175.	2.0	87
86	Human nasal olfactory epithelium as a dynamic marker for CNS therapy development. Experimental Neurology, 2011, 232, 203-211.	2.0	21
87	Spatial and temporal changes in promoter activity of the astrocyte glutamate transporter GLT1 following traumatic spinal cord injury. Journal of Neuroscience Research, 2011, 89, 1001-1017.	1.3	35
88	John W. "Jack―Griffin, MD. Annals of Neurology, 2011, 69, A11-A13.	2.8	1
89	Molecular comparison of GLT1 ⁺ and ALDH1L1 ⁺ astrocytes <i>in vivo</i> in astroglial reporter mice. Glia, 2011, 59, 200-207.	2.5	201
90	Epigenetic regulation of neuronâ€dependent induction of astroglial synaptic protein GLT1. Glia, 2010, 58, 277-286.	2.5	74

#	Article	IF	CITATIONS
91	GLT-1 promoter activity in astrocytes and neurons of mouse hippocampus and somatic sensory cortex. Frontiers in Neuroanatomy, 2010, 3, 31.	0.9	37
92	Zones of Enhanced Glutamate Release from Climbing Fibers in the Mammalian Cerebellum. Journal of Neuroscience, 2010, 30, 7290-7299.	1.7	70
93	Quantitative analysis of EAAT4 promoter activity in neurons and astrocytes of mouse somatic sensory cortex. Neuroscience Letters, 2010, 474, 42-45.	1.0	13
94	A phase II trial of talampanel in subjects with amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2010, 11, 266-271.	2.3	114
95	Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Annals of Neurology, 2009, 65, S3-9.	2.8	583
96	Presynaptic Regulation of Astroglial Excitatory Neurotransmitter Transporter GLT1. Neuron, 2009, 61, 880-894.	3.8	215
97	Focal transplantation–based astrocyte replacement is neuroprotective in a model of motor neuron disease. Nature Neuroscience, 2008, 11, 1294-1301.	7.1	403
98	Analysis of cerebellar Purkinje cells using EAAT4 glutamate transporter promoter reporter in mice generated via bacterial artificial chromosome-mediated transgenesis. Experimental Neurology, 2007, 203, 205-212.	2.0	35
99	Variations in Promoter Activity Reveal a Differential Expression and Physiology of Glutamate Transporters by Glia in the Developing and Mature CNS. Journal of Neuroscience, 2007, 27, 6607-6619.	1.7	287
100	ALS - Motor Neuron Disease: Mechanism and Development of New Therapies. Journal of Visualized Experiments, 2007, , 245.	0.2	1
101	Intraparenchymal spinal cord delivery of adeno-associated virus IGF-1 is protective in the SOD1G93A model of ALS. Brain Research, 2007, 1185, 256-265.	1.1	112
102	Therapeutic immunization with a glatiramer acetate derivative does not alter survival in G93A and G37R SOD1 mouse models of familial ALS. Neurobiology of Disease, 2007, 26, 146-152.	2.1	44
103	Spectrin mutations cause spinocerebellar ataxia type 5. Nature Genetics, 2006, 38, 184-190.	9.4	346
104	β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature, 2005, 433, 73-77.	13.7	1,379
105	Climbing Fiber Activation of EAAT4 Transporters and Kainate Receptors in Cerebellar Purkinje Cells. Journal of Neuroscience, 2004, 24, 103-111.	1.7	92
106	Retrograde Viral Delivery of IGF-1 Prolongs Survival in a Mouse ALS Model. Science, 2003, 301, 839-842.	6.0	813
107	Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1604-1609.	3.3	766
108	Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS. Annals of Neurology, 2002, 52, 771-778.	2.8	299

#	Article	IF	CITATIONS
109	Mutant SOD1 causes motor neuron disease independent of copper chaperone–mediated copper loading. Nature Neuroscience, 2002, 5, 301-307.	7.1	253
110	Modulation of the neuronal glutamate transporter EAAC1 by the interacting protein GTRAP3-18. Nature, 2001, 410, 84-88.	13.7	208
111	Modulation of the neuronal glutamate transporter EAAT4 by two interacting proteins. Nature, 2001, 410, 89-93.	13.7	234
112	From charcot to lou gehrig: deciphering selective motor neuron death in als. Nature Reviews Neuroscience, 2001, 2, 806-819.	4.9	1,264
113	Differential synaptic localization of the glutamate transporter EAAC1 and glutamate receptor subunit gluR2 in the rat hippocampus. , 2000, 418, 255-269.		138
114	Inhibition of cyclooxygenase-2 protects motor neurons in an organotypic model of amyotrophic lateral sclerosis. Annals of Neurology, 2000, 48, 792-795.	2.8	118
115	Differential synaptic localization of the glutamate transporter EAAC1 and glutamate receptor subunit gluR2 in the rat hippocampus. , 2000, 418, 255.		3
116	Inhibition of cyclooxygenaseâ€2 protects motor neurons in an organotypic model of amyotrophic lateral sclerosis. Annals of Neurology, 2000, 48, 792-795.	2.8	7
117	The Copper Chaperone CCS Is Abundant in Neurons and Astrocytes in Human and Rodent Brain. Journal of Neurochemistry, 1999, 72, 422-429.	2.1	107
118	Mutations in the glutamate transporter EAAT2 gene do not cause abnormal EAAT2 transcripts in amyotrophic lateral sclerosis. Annals of Neurology, 1998, 43, 645-653.	2.8	109
119	Glutamate transport in cultures from developing avian cerebellum: Presence of GLT-1 immunoreactivity in Purkinje neurons. Journal of Neuroscience Research, 1998, 54, 595-603.	1.3	25
120	Molecular cloning and expression of the rat EAAT4 glutamate transporter subtype. Molecular Brain Research, 1998, 63, 174-179.	2.5	49
121	Aberrant RNA Processing in a Neurodegenerative Disease: the Cause for Absent EAAT2, a Glutamate Transporter, in Amyotrophic Lateral Sclerosis. Neuron, 1998, 20, 589-602.	3.8	642
122	Regulation of the Glial Na ⁺ -Dependent Glutamate Transporters by Cyclic AMP Analogs and Neurons. Molecular Pharmacology, 1998, 53, 355-369.	1.0	292
123	Activity and protein localization of multiple glutamate transporters in gestation <i>day 14</i> vs. <i>day 20</i> rat placenta. American Journal of Physiology - Cell Physiology, 1998, 274, C603-C614.	2.1	65
124	Traumatic Brain Injury Downâ€Regulates Glial Glutamate Transporter (GLTâ€1 and GLAST) Proteins in Rat Brain. Journal of Neurochemistry, 1998, 70, 2020-2027.	2.1	182
125	Localization of the high-affinity glutamate transporter EAAC1 in rat kidney. American Journal of Physiology - Renal Physiology, 1997, 273, F1023-F1029.	1.3	30
126	Neuronal Regulation of Glutamate Transporter Subtype Expression in Astrocytes. Journal of Neuroscience, 1997, 17, 932-940.	1.7	475

#	Article	IF	CITATIONS
127	Glutamate Transporter Protein Subtypes Are Expressed Differentially during Rat CNS Development. Journal of Neuroscience, 1997, 17, 8363-8375.	1.7	499
128	Non-synaptic Localization of the Glutamate Transporter EAACI in Cultured Hippocampal Neurons. European Journal of Neuroscience, 1997, 9, 1902-1910.	1.2	84
129	Hypoxia?ischemia causes abnormalities in glutamate transporters and death of astroglia and neurons in newborn striatum. Annals of Neurology, 1997, 42, 335-348.	2.8	264
130	Alterations in Glutamate Transporter Protein Levels in Kindlingâ€Induced Epilepsy. Journal of Neurochemistry, 1997, 68, 1564-1570.	2.1	124
131	Distribution of Glutamate Transporter Subtypes During Human Brain Development. Journal of Neurochemistry, 1997, 69, 2571-2580.	2.1	135
132	Knockout of Glutamate Transporters Reveals a Major Role for Astroglial Transport in Excitotoxicity and Clearance of Glutamate. Neuron, 1996, 16, 675-686.	3.8	2,332
133	Glutamate transporter gene expression in amyotrophic lateral sclerosis motor cortex. Annals of Neurology, 1996, 39, 676-679.	2.8	214
134	Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Annals of Neurology, 1995, 38, 73-84.	2.8	1,356
135	Neuroprotective Strategies in a Model of Chronic Glutamateâ€Mediated Motor Neuron Toxicity. Journal of Neurochemistry, 1995, 65, 643-651.	2.1	184
136	Regional Deafferentiation Downâ€Regulates Subtypes of Glutamate Transporter Proteins. Journal of Neurochemistry, 1995, 65, 2800-2803.	2.1	122
137	Benzodiazepine-receptor ligands and hepatic encephalopathy: A causal relationship?. Hepatology, 1994, 19, 248-250.	3.6	14
138	Localization of neuronal and glial glutamate transporters. Neuron, 1994, 13, 713-725.	3.8	1,575
139	Benzodiazepine-receptor ligands and hepatic encephalopathy: A causal relationship?. Hepatology, 1994, 19, 248-250.	3.6	2
140	Decreased Glutamate Transport by the Brain and Spinal Cord in Amyotrophic Lateral Sclerosis. New England Journal of Medicine, 1992, 326, 1464-1468.	13.9	1,125
141	Purification and Characterization of Naturally Occurring Benzodiazepine Receptor Ligands in Rat and Human Brain. Journal of Neurochemistry, 1992, 58, 2102-2115.	2.1	71
142	Excitatory amino acids in amyotrophic lateral sclerosis: An update. Annals of Neurology, 1991, 30, 224-225.	2.8	95
143	Endogenous Benzodiazepine Receptor Ligands in Human and Animal Hepatic Encephalopathy. Journal of Neurochemistry, 1990, 55, 2015-2023.	2.1	121
144	Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Annals of Neurology, 1990, 28, 18-25.	2.8	604

9

#	Article	IF	CITATIONS
145	Cerebrospinal fluid content of diazepam binding inhibitor in chronic hepatic encephalopathy. Annals of Neurology, 1989, 26, 57-62.	2.8	82
146	Tau Protein Disrupts Nucleocytoplasmic Transport in Alzheimerrs Disease. SSRN Electronic Journal, 0, , .	0.4	0
147	Identification of Therapeutic Targets for Amyotrophic Lateral Sclerosis Using PandaOmics – An Al-Enabled Biological Target Discovery Platform. Frontiers in Aging Neuroscience, 0, 14, .	1.7	32