Peter J Wilde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8139224/publications.pdf

Version: 2024-02-01

		34105	5	51608
196	9,123	52		86
papers	citations	h-index		g-index
197	197	197		6070
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	The role of bile salts in digestion. Advances in Colloid and Interface Science, 2011, 165, 36-46.	14.7	422
2	Proteins and emulsifiers at liquid interfaces. Advances in Colloid and Interface Science, 2004, 108-109, 63-71.	14.7	404
3	Interfaces: their role in foam and emulsion behaviour. Current Opinion in Colloid and Interface Science, 2000, 5, 176-181.	7.4	361
4	Orogenic Displacement of Protein from the Air/Water Interface by Competitive Adsorption. Journal of Colloid and Interface Science, 1999, 210, 157-166.	9.4	328
5	Interfacial & Interface Science, 2011, 165, 14-22.	14.7	261
6	Competitive adsorption of proteins and low-molecular-weight surfactants: computer simulation and microscopic imaging. Advances in Colloid and Interface Science, 2004, 107, 27-49.	14.7	176
7	The influence of surface composition and molecular diffusion on the stability of foams formed from protein/surfactant mixtures. Journal of Colloid and Interface Science, 1990, 138, 489-504.	9.4	166
8	Orogenic Displacement of Protein from the Oil/Water Interface. Langmuir, 2000, 16, 2242-2247.	3.5	154
9	Interfacial Characterization of \hat{l}^2 -Lactoglobulin Networks: Displacement by Bile Salts. Langmuir, 2008, 24, 6759-6767.	3.5	151
10	Modulating Pancreatic Lipase Activity with Galactolipids: Effects of Emulsion Interfacial Composition. Langmuir, 2009, 25, 9352-9360.	3.5	138
11	The role of interactions in defining the structure of mixed protein–surfactant interfaces. Advances in Colloid and Interface Science, 2005, 117, 3-13.	14.7	128
12	Structural mechanism and kinetics of inÂvitro gastric digestion are affected by process-induced changes in bovine milk. Food Hydrocolloids, 2019, 86, 172-183.	10.7	118
13	Orogenic Displacement in Mixed \hat{l}^2 -Lactoglobulin/ \hat{l}^2 -Casein Films at the Air/Water Interface. Langmuir, 2001, 17, 6593-6598.	3.5	115
14	The Competitive Displacement of \hat{l}^2 -Lactoglobulin by Tween 20 from Oil-Water and Air-Water Interfaces. Journal of Colloid and Interface Science, 1993, 155, 48-54.	9.4	111
15	In Situ Measurement of the Displacement of Protein Films from the Air/Water Interface by Surfactant. Biomacromolecules, 2001, 2, 1001-1006.	5.4	111
16	Competitive Displacement of \hat{l}^2 -Lactoglobulin from the Air/Water Interface by Sodium Dodecyl Sulfate. Langmuir, 2000, 16, 8176-8181.	3.5	109
17	Competitive adsorption of proteins with methylcellulose and hydroxypropyl methylcellulose. Food Hydrocolloids, 2005, 19, 485-491.	10.7	108
18	Adsorbed Protein Secondary and Tertiary Structures by Circular Dichroism and Infrared Spectroscopy with Refractive Index Matched Emulsions. Journal of Agricultural and Food Chemistry, 2001, 49, 859-866.	5.2	107

#	Article	IF	CITATIONS
19	Effect of Surfactant Type on Surfactantâ'Protein Interactions at the Airâ'Water Interface. Biomacromolecules, 2004, 5, 984-991.	5.4	97
20	Emulsionsâ€"creaming and rheology. Current Opinion in Colloid and Interface Science, 2002, 7, 419-425.	7.4	95
21	Control of Surfactant-Induced Destabilization of Foams through Polyphenol-Mediated Protein-Protein Interactions. Journal of Agricultural and Food Chemistry, 1995, 43, 295-300.	5.2	93
22	Mycoprotein: The Future of Nutritious Nonmeat Protein, a Symposium Review. Current Developments in Nutrition, 2019, 3, nzz021.	0.3	91
23	Influence of competitive adsorption of a lysopalmitoylphosphatidylcholine on the functional properties of puroindoline, a lipid-binding protein isolated from wheat flour. Journal of Agricultural and Food Chemistry, 1993, 41, 1570-1576.	5.2	86
24	One-step production of multiple emulsions: microfluidic, polymer-stabilized and particle-stabilized approaches. Soft Matter, 2016, 12, 998-1008.	2.7	86
25	Atomic Force Microscopy of Emulsion Droplets:Â Probing Dropletâ^'Droplet Interactions. Langmuir, 2004, 20, 116-122.	3.5	84
26	Bubble Formation and Stabilization in Bread Dough. Food and Bioproducts Processing, 2003, 81, 189-193.	3.6	83
27	The adsorption of surface-active complexes between \hat{I}^2 -casein, \hat{I}^2 -lactoglobulin and ionic surfactants and their shear rheological behaviour. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 114, 255-265.	4.7	82
28	Properties of mixed protein/surfactant adsorption layers. Colloids and Surfaces B: Biointerfaces, 1999, 12, 399-407.	5.0	80
29	A statherin and calcium enriched layer at the air interface of human parotid saliva. Biochemical Journal, 2005, 389, 111-116.	3.7	78
30	Processing of oat: the impact on oat's cholesterol lowering effect. Food and Function, 2018, 9, 1328-1343.	4.6	77
31	The interaction of sucrose esters with \hat{l}^2 -lactoglobulin and \hat{l}^2 -casein from bovine milk. Food Hydrocolloids, 1992, 6, 173-186.	10.7	76
32	Rheology of Mixed \hat{l}^2 -Casein/ \hat{l}^2 -Lactoglobulin Films at the Airâ 'Water Interface. Journal of Agricultural and Food Chemistry, 2004, 52, 3930-3937.	5.2	74
33	Emulsion Stability as Affected by Competitive Adsorption Between an Oil-Soluble Emulsifier and Milk Proteins at the Interface. Journal of Food Science, 1998, 63, 39-43.	3.1	73
34	The effects of processing and mastication on almond lipid bioaccessibility using novel methods of <i>in vitro</i> digestion modelling and micro-structural analysis. British Journal of Nutrition, 2014, 112, 1521-1529.	2.3	73
35	Dynamic surface tension and surface shear rheology studies of mixed \hat{l}^2 -lactoglobulin/Tween 20 systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 98, 127-135.	4.7	72
36	Functional and Structural Properties of ?-lactoglobulin as Affected by High Pressure Treatment. Journal of Food Science, 1996, 61, 1123-1128.	3.1	72

#	Article	IF	CITATIONS
37	Comparison of foaming and interfacial properties of pure sucrose monolaurates, dilaurate and commercial preparations. Food Hydrocolloids, 1998, 12, 237-244.	10.7	71
38	Adsorption of Bile Salts and Pancreatic Colipase and Lipase onto Digalactosyldiacylglycerol and Dipalmitoylphosphatidylcholine Monolayers. Langmuir, 2010, 26, 9782-9793.	3 . 5	71
39	THE PROTECTION OF BEER FOAM AGAINST LIPID-INDUCED DESTABILIZATION. Journal of the Institute of Brewing, 1994, 100, 23-25.	2.3	70
40	Effect of Gastric Conditions on \hat{l}^2 -Lactoglobulin Interfacial Networks: Influence of the Oil Phase on Protein Structure. Langmuir, 2010, 26, 15901-15908.	3.5	69
41	The effect of surfactant type on protein displacement from the air–water interface. Food Hydrocolloids, 2004, 18, 509-515.	10.7	68
42	Impact of cell wall encapsulation of almonds on in vitro duodenal lipolysis. Food Chemistry, 2015, 185, 405-412.	8.2	66
43	Fish Oil Emulsions Stabilized with Caseinate Glycated by Dextran: Physicochemical Stability and Gastrointestinal Fate. Journal of Agricultural and Food Chemistry, 2019, 67, 452-462.	5. 2	66
44	The supramolecular organisation of ?-casein: effect on interfacial properties. Food Hydrocolloids, 2005, 19, 387-393.	10.7	64
45	Comparative study of the stability of multiple emulsions containing a gelled or aqueous internal phase. Food Hydrocolloids, 2014, 42, 215-222.	10.7	63
46	In vitro gastric digestion of interfacial protein structures: visualisation by AFM. Soft Matter, 2010, 6, 4908.	2.7	62
47	Atomic Force Microscopy as a Tool for Interpreting the Rheology of Food Biopolymers at the Molecular Level. LWT - Food Science and Technology, 2001, 34, 3-10.	5. 2	59
48	Distribution of Lipids in the Grain of Wheat (cv. Hereward) Determined by Lipidomic Analysis of Milling and Pearling Fractions. Journal of Agricultural and Food Chemistry, 2015, 63, 10705-10716.	5 . 2	59
49	Differences in the structure and dynamics of the adsorbed layers in protein-stabilized model foams and emulsions. Faraday Discussions, 1994, 98, 253.	3.2	57
50	Enhancement of Protein Foam Stability by Formation of Wheat Arabinoxylan-Protein Crosslinks. Cereal Chemistry, 1998, 75, 493-499.	2.2	56
51	Gelation of soybean protein and polysaccharides delays digestion. Food Chemistry, 2017, 221, 1598-1605.	8.2	56
52	Atomic Force Microscopy of Interfacial Protein Films. Journal of Colloid and Interface Science, 1996, 183, 600-602.	9.4	54
53	Surface properties and locations of gluten proteins and lipids revealed using confocal scanning laser microscopy in bread dough. Journal of Cereal Science, 2004, 39, 403-411.	3.7	54
54	Evidence of extraneous surfactant adsorption altering adsorbed layer properties of \hat{l}^2 -lactoglobulin. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 1991-1996.	1.7	53

#	Article	IF	CITATIONS
55	Composition and surface properties of dough liquor. Journal of Cereal Science, 2006, 43, 284-292.	3.7	53
56	Stabilisation of oil-in-water emulsions with non-chemical modified gelatinised starch. Food Hydrocolloids, 2018, 81, 409-418.	10.7	53
57	The impact of oat structure and \hat{l}^2 -glucan on in vitro lipid digestion. Journal of Functional Foods, 2017, 38, 378-388.	3.4	52
58	Disruption of Viscoelastic \hat{l}^2 -Lactoglobulin Surface Layers at the Airâ "Water Interface by Nonionic Polymeric Surfactants. Langmuir, 2004, 20, 10150-10158.	3.5	51
59	A systematic micro-dissection of brewers' spent grain. Journal of Cereal Science, 2008, 47, 357-364.	3.7	51
60	InSituObservation of the Surfactant-Induced Displacement of Protein from a Graphite Surface by Atomic Force Microscopy. Langmuir, 1999, 15, 4636-4640.	3.5	50
61	Quercetin solubilisation in bile salts: A comparison with sodium dodecyl sulphate. Food Chemistry, 2016, 211, 356-364.	8.2	50
62	Growth of Surfactant Domains in Protein Films. Langmuir, 2003, 19, 6032-6038.	3.5	49
63	Comparison of the Orogenic Displacement of Sodium Caseinate with the Caseins from the Airâ^'Water Interface by Nonionic Surfactants. Langmuir, 2009, 25, 6739-6744.	3.5	49
64	Foam Measurement by the Microconductivity Technique: An Assessment of Its Sensitivity to Interfacial and Environmental Factors. Journal of Colloid and Interface Science, 1996, 178, 733-739.	9.4	48
65	Molecular Diffusion and Drainage of Thin Liquid Films Stabilized by Bovine Serum Albuminâ^Tween 20 Mixtures in Aqueous Solutions of Ethanol and Sucrose. Langmuir, 1997, 13, 7151-7157.	3.5	48
66	Towards an Understanding of the Low Bioavailability of Quercetin: A Study of Its Interaction with Intestinal Lipids. Nutrients, 2017, 9, 111.	4.1	48
67	Impact of caseins and whey proteins ratio and lipid content on in vitro digestion and ex vivo absorption. Food Chemistry, 2020, 319, 126514.	8.2	48
68	The effect of physiological conditions on the surface structure of proteins: Setting the scene for human digestion of emulsions. European Physical Journal E, 2009, 30, 165-174.	1.6	46
69	Influence of oat components on lipid digestion using an in vitro model: Impact of viscosity and depletion flocculation mechanism. Food Hydrocolloids, 2018, 83, 253-264.	10.7	46
70	Pectin Conformation in Solution. Journal of Physical Chemistry B, 2018, 122, 7286-7294.	2.6	46
71	Recovery of Polyphenols from Brewer's Spent Grains. Antioxidants, 2019, 8, 380.	5.1	46
72	Competitive adsorption of l-1±-lysophosphatidylcholine/ \hat{l}^2 -lactoglobulin mixtures at the interfaces of foams and foam lamellae. Colloids and Surfaces B: Biointerfaces, 1995, 3, 349-356.	5.0	45

#	Article	IF	Citations
73	Restoration of protein foam stability through electrostatic propylene glycol alginate-mediated protein–protein interactions. Colloids and Surfaces B: Biointerfaces, 1999, 15, 203-213.	5.0	45
74	Surface Diffusion in Phospholipid Foam Films. Journal of Colloid and Interface Science, 1994, 167, 80-86.	9.4	44
75	Destabilization of \hat{I}_{\pm} -lactalbumin foams by competitive adsorption of the surfactant Tween 20. Colloids and Surfaces, 1991, 59, 209-223.	0.9	42
76	Effect of Hydrocarbon Chain and pH on Structural and Topographical Characteristics of Phospholipid Monolayers. Journal of Physical Chemistry B, 2008, 112, 7651-7661.	2.6	42
77	Effect of substituent pattern and molecular weight of cellulose ethers on interactions with different bile salts. Food and Function, 2015, 6, 730-739.	4.6	42
78	Competitive adsorption of \hat{l}^2 -lactoglobulin and \hat{l}^2 -casein with Span 80 at the oil-water interface and the effects on emulsion behaviour. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 114, 237-244.	4.7	41
79	Mechanisms, physiology, and recent research progress of gastric emptying. Critical Reviews in Food Science and Nutrition, 2021, 61, 2742-2755.	10.3	41
80	A Comparison of the Functional and Interfacial Properties of \hat{l}^2 -Casein and Dephosphorylated \hat{l}^2 -Casein. Journal of Colloid and Interface Science, 1997, 195, 77-85.	9.4	40
81	Surface Dilational Properties of Protein and Lipid Films at the Airâ^Water Interface. Langmuir, 1998, 14, 2160-2166.	3.5	40
82	Probing the <i>in Situ</i> Competitive Displacement of Protein by Nonionic Surfactant Using Atomic Force Microscopy. Langmuir, 2010, 26, 12560-12566.	3.5	39
83	Heat Treatment of Bovine α-Lactalbumin Results in Partially Folded, Disulfide Bond Shuffled States with Enhanced Surface Activity. Biochemistry, 2007, 46, 9774-9784.	2.5	38
84	Structural stability of liposome-stabilized oil-in-water pickering emulsions and their fate during <i>in vitro</i> digestion. Food and Function, 2019, 10, 7262-7274.	4.6	38
85	A physicochemical investigation of two phosphatidylcholine/bile salt interfaces: implications for lipase activation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1580, 110-122.	2.4	37
86	A natural mutation in Pisum sativum L. (pea) alters starch assembly and improves glucose homeostasis in humans. Nature Food, 2020, 1, 693-704.	14.0	37
87	Rheokinetic Analysis of Protein Films at the Airâ^'Aqueous Subphase Interface. 2. Bovine Serum Albumin Adsorption from Sucrose Aqueous Solutions. Journal of Agricultural and Food Chemistry, 1997, 45, 3016-3021.	5.2	36
88	Understanding the Effect of Particle Size and Processing on Almond Lipid Bioaccessibility through Microstructural Analysis: From Mastication to Faecal Collection. Nutrients, 2018, 10, 213.	4.1	36
89	The Influence of Ethanol on the Foaming Properties of Beer Protein Fractions: A Comparison of Rudin and Microconductivity Methods of Foam Assessment. Journal of the Science of Food and Agriculture, 1996, 70, 531-537.	3.5	34
90	Protein unfolding at fluid interfaces and its effect on proteolysis in the stomach. Soft Matter, 2012, 8, 4402.	2.7	34

#	Article	IF	Citations
91	Oatmeal particle size alters glycemic index but not as a function of gastric emptying rate. American Journal of Physiology - Renal Physiology, 2017, 313, G239-G246.	3.4	34
92	Rheokinetic Analysis of Protein Films at the Airâ^'Aqueous Phase Interface. 1. Bovine Serum Albumin Adsorption on Ethanol Aqueous Solutions. Journal of Agricultural and Food Chemistry, 1997, 45, 3010-3015.	5.2	33
93	Effect of Processing on the Displacement of Whey Proteins:Â Applying the Orogenic Model to a Real System. Journal of Agricultural and Food Chemistry, 2004, 52, 1287-1292.	5.2	33
94	Structural characterisation of parotid and whole mouth salivary pellicles adsorbed onto DPI and QCMD hydroxyapatite sensors. Colloids and Surfaces B: Biointerfaces, 2014, 116, 603-611.	5.0	33
95	Dairy structures and physiological responses: a matter of gastric digestion. Critical Reviews in Food Science and Nutrition, 2020, 60, 3737-3752.	10.3	32
96	Effect of the Interfacial Layer Composition on the Properties of Emulsion Creams. Journal of Agricultural and Food Chemistry, 2007, 55, 5611-5619.	5.2	31
97	The adsorption–desorption behaviour and structure function relationships of bile salts. Soft Matter, 2014, 10, 6457-6466.	2.7	30
98	Enhancement of the stability of protein-based food foams using trivalent cations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 114, 227-236.	4.7	29
99	Interactions of food biopolymers. Current Opinion in Colloid and Interface Science, 1997, 2, 567-572.	7.4	29
100	Role of Beer Lipid-Binding Proteins in Preventing Lipid Destabilization of Foam. Journal of Agricultural and Food Chemistry, 2002, 50, 7645-7650.	5.2	29
101	Droplet-Stabilized Oil-in-Water Emulsions Protect Unsaturated Lipids from Oxidation. Journal of Agricultural and Food Chemistry, 2019, 67, 2626-2636.	5.2	29
102	Effect of emulsifier type on sensory properties of oil-in-water emulsions., 1998, 76, 469-476.		28
103	Surface Rheological Properties of Monostearin and Monoolein Films Spread on the Airâ^'Aqueous Phase Interface. Industrial & Engineering Chemistry Research, 1996, 35, 4449-4456.	3.7	27
104	Structural and technological characterization of pectin extracted with sodium citrate and nitric acid from sunflower heads. Electrophoresis, 2018, 39, 1984-1992.	2.4	27
105	Obtainment and characterisation of pectin from sunflower heads purified by membrane separation techniques. Food Chemistry, 2020, 318, 126476.	8.2	27
106	Rheokinetic Analysis of Bovine Serum Albumin and Tween 20 Mixed Films on Aqueous Solutions. Journal of Agricultural and Food Chemistry, 1998, 46, 2177-2184.	5.2	26
107	Adsorption of beta-Lactoglobulin variants A and B to the air-water interface. International Journal of Food Science and Technology, 1999, 34, 509-516.	2.7	26
108	Mycoprotein ingredient structure reduces lipolysis and binds bile salts during simulated gastrointestinal digestion. Food and Function, 2020, 11, 10896-10906.	4.6	26

#	Article	IF	CITATIONS
109	Destabilization of Beer Foam by Lipids: Structural and Interfacial Effects. Journal of the American Society of Brewing Chemists, 2003, 61, 196-202.	1.1	25
110	Structures and rheological properties of hen egg yolk low density lipoprotein layers spread at the air–water interface at pH 3 and 7. Colloids and Surfaces B: Biointerfaces, 2007, 57, 124-133.	5.0	25
111	Morphology of bile salts micelles and mixed micelles with lipolysis products, from scattering techniques and atomistic simulations. Journal of Colloid and Interface Science, 2021, 587, 522-537.	9.4	25
112	The effect of irradiation on the functional properties of spray-dried egg white protein. Food Hydrocolloids, 1992, 5, 541-548.	10.7	24
113	Probing the role of interfacial rheology in the relaxation behaviour between deformable oil droplets using force spectroscopy. Soft Matter, 2013, 9, 11473.	2.7	24
114	THE EFFECT OF PRE-ISOMERISED HOP EXTRACT ON THE PROPERTIES OF MODEL PROTEIN STABILIZED FOAMS. Journal of the Institute of Brewing, 1991, 97, 169-172.	2.3	23
115	Surface Diffusion in Phospholipid Foam Films. Journal of Colloid and Interface Science, 1995, 174, 283-288.	9.4	23
116	Molecular mobility in the monolayers of foam films stabilized by porcine lung surfactant. Biophysical Journal, 1996, 71, 2591-2601.	0.5	23
117	Rheological behaviour of aerated palm kernel oil/water emulsions. Food Hydrocolloids, 2009, 23, 1358-1365.	10.7	23
118	Effect of calcium ions on in vitro pellicle formation from parotid and whole saliva. Colloids and Surfaces B: Biointerfaces, 2013, 102, 546-553.	5.0	23
119	Protein bioaccessibility from mycoprotein hyphal structure: In vitro investigation of underlying mechanisms. Food Chemistry, 2020, 330, 127252.	8.2	23
120	Molecular insights into the behaviour of bile salts at interfaces: a key to their role in lipid digestion. Journal of Colloid and Interface Science, 2019, 556, 266-277.	9.4	22
121	The foaming properties of native and pressure treated \hat{l}^2 -casein. Food Hydrocolloids, 1996, 10, 335-342.	10.7	21
122	Probing the molecular interactions between pharmaceutical polymeric carriers and bile salts in simulated gastrointestinal fluids using NMR spectroscopy. Journal of Colloid and Interface Science, 2019, 551, 147-154.	9.4	20
123	Oat and lipolysis: Food matrix effect. Food Chemistry, 2019, 278, 683-691.	8.2	20
124	Adsorption kinetics and rheological properties of food proteins at air/water and oil/water interfaces. Molecular Nutrition and Food Research, 1998, 42, 225-228.	0.0	20
125	Competitive effects in the adsorbed layer of oil-in-water emulsions stabilised by β-lactoglobulin–Tween 20 mixtures. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 2755-2759.	1.7	19
126	Temperature- and pH-Dependent Shattering: Insoluble Fatty Ammonium Phosphate Films at Water–Oil Interfaces. Langmuir, 2015, 31, 9312-9324.	3.5	19

#	Article	IF	CITATIONS
127	Protein/Emulsifier Interactions. , 2008, , 89-171.		18
128	Partially Folded Forms of Barley Lipid Transfer Protein Are More Surface Active. Biochemistry, 2009, 48, 12081-12088.	2.5	18
129	Intrinsic wheat lipid composition effects the interfacial and foaming properties of dough liquor. Food Hydrocolloids, 2018, 75, 211-222.	10.7	18
130	Cyanidin-3-O-glucoside protects intestinal epithelial cells from palmitate-induced lipotoxicity. Archives of Physiology and Biochemistry, 2023, 129, 379-386.	2.1	18
131	Comparison of the behavior of fungal and plant cell wall during gastrointestinal digestion and resulting health effects: A review. Trends in Food Science and Technology, 2021, 110, 132-141.	15.1	18
132	Consistency of surface mechanical properties of spread protein layers at the liquid–air interface at different spreading conditions. Colloids and Surfaces B: Biointerfaces, 1999, 12, 391-397.	5.0	17
133	Bursting the bubble; how surfactants destabilize protein foams, revealed by atomic force microscopy. Surface and Interface Analysis, 1999, 27, 433-436.	1.8	17
134	Surface Properties Are Highly Sensitive to Small pH Induced Changes in the 3-D Structure of \hat{l}_{\pm} -Lactalbumin. Biochemistry, 2008, 47, 1659-1666.	2.5	17
135	Effect of oil droplet size on the gastric digestion of milk protein emulsions using a semi-dynamic gastric model. Food Hydrocolloids, 2022, 124, 107278.	10.7	16
136	Foaming properties of modified faba bean protein isolates. Food Hydrocolloids, 1994, 8, 455-468.	10.7	15
137	The Effects of Caseinate Submicelles and Lecithin on the Thin Film Drainage and Behavior of Commercial Caseinate. Journal of Colloid and Interface Science, 1998, 205, 316-322.	9.4	15
138	Eating for Life: Designing Foods for Appetite Control. Journal of Diabetes Science and Technology, 2009, 3, 366-370.	2.2	15
139	Effects of Cultivar and Nitrogen Nutrition on the Lipid Composition of Wheat Flour. Journal of Agricultural and Food Chemistry, 2017, 65, 5427-5434.	5.2	15
140	Effect of sucrose substitution with stevia and saccharin on rheological properties of gels from sunflower pectins. Food Hydrocolloids, 2021, 120, 106910.	10.7	15
141	Structure modification in hen egg yolk low density lipoproteins layers between 30 and 45mN/m observed by AFM. Colloids and Surfaces B: Biointerfaces, 2007, 54, 241-248.	5.0	14
142	Characterization of bamboo foam films by neutron and X-ray experiments. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 309, 112-116.	4.7	14
143	Non-chemically modified waxy rice starch stabilised wow emulsions for salt reduction. Food and Function, 2019, 10, 4242-4255.	4.6	14
144	The interaction of α-amylase with mycoprotein: Diffusion through the fungal cell wall, enzyme entrapment, and potential physiological implications. Food Hydrocolloids, 2020, 108, 106018.	10.7	14

#	Article	IF	CITATIONS
145	Structural and compositional changes in the salivary pellicle induced upon exposure to SDS and STP. Biofouling, 2014, 30, 1183-1197.	2.2	13
146	A comparative study of the influence of the content and source of \hat{l}^2 -glucan on the rheological, microstructural properties and stability of milk gel during acidification. Food Hydrocolloids, 2021, 113, 106486.	10.7	13
147	Role of calcium on lipid digestion and serum lipids: a review. Critical Reviews in Food Science and Nutrition, 2023, 63, 813-826.	10.3	13
148	An evolving view on food viscosity regulating gastric emptying. Critical Reviews in Food Science and Nutrition, 2023, 63, 5783-5799.	10.3	13
149	Genetic variation in wheat grain quality is associated with differences in the galactolipid content of flour and the gas bubble properties of dough liquor. Food Chemistry: X, 2020, 6, 100093.	4.3	12
150	Individual differences in oral tactile sensitivity and gustatory fatty acid sensitivity and their relationship with fungiform papillae density, mouth behaviour and texture perception of a food model varying in fat. Food Quality and Preference, 2021, 90, 104116.	4.6	12
151	Molecular Diffusion at Interfaces and its Relationship to Disperse Phase Stability. , 1991, , 272-276.		12
152	Interaction of transglutaminase with adsorbed and spread films of \hat{l}^2 -casein and $\hat{\theta}^2$ -casein. Colloids and Surfaces B: Biointerfaces, 2015, 128, 254-260.	5.0	11
153	Effect of Lipid Phase State and Foam Film Type on the Properties of DMPG Stabilized Foams. Journal of Colloid and Interface Science, 1997, 190, 278-285.	9.4	10
154	Density and Microviscosity Studies of Palm Oil/Water Emulsions. Journal of Agricultural and Food Chemistry, 2005, 53, 4448-4453.	5.2	10
155	\hat{l}^2 -glucan release from fungal and plant cell walls after simulated gastrointestinal digestion. Journal of Functional Foods, 2021, 83, 104543.	3.4	10
156	Emulsions and nanoemulsions using dairy ingredients. , 2009, , 539-564.		9
157	Influence of interfacial mechanisms on the rheology of creaming emulsions. International Journal of Food Properties, 2018, 21, 1322-1331.	3.0	9
158	Interactions of bile salts with a dietary fibre, methylcellulose, and impact on lipolysis. Carbohydrate Polymers, 2020, 231, 115741.	10.2	9
159	Anticholinesterase Activities of Different Solvent Extracts of Brewer's Spent Grain. Foods, 2021, 10, 930.	4.3	9
160	Structural modifications of the salivary conditioning film upon exposure to sodium bicarbonate: implications for oral lubrication and mouthfeel. Soft Matter, 2016, 12, 2794-2801.	2.7	8
161	Comparison of oral physiological and salivary rheological properties of Chinese Mongolian and Han young adults. Archives of Oral Biology, 2021, 123, 105033.	1.8	8
162	Competitive Destabilization/Stabilization of βâ€Lactoglobulin Foam by PEOâ€PPOâ€PEO Polymeric Surfactants. Journal of Dispersion Science and Technology, 2006, 27, 527-536.	2.4	7

#	Article	IF	Citations
163	The TeRiFiQ project: Combining technologies to achieve significant binary reductions in sodium, fat and sugar content in everyday foods whilst optimising their nutritional quality. Nutrition Bulletin, 2017, 42, 361-368.	1.8	7
164	Improving Emulsion Stability Through Selection of Emulsifiers and Stabilizers. , 2019, , .		7
165	Palmitic acid–rich oils with and without interesterification lower postprandial lipemia and increase atherogenic lipoproteins compared with a MUFA-rich oil: A randomized controlled trial. American Journal of Clinical Nutrition, 2021, 113, 1221-1231.	4.7	7
166	Postâ€translational modification of barley LTP1b: The lipid adduct lies in the hydrophobic cavity and alters the protein dynamics. FEBS Letters, 2007, 581, 4557-4561.	2.8	6
167	Identifying crop variants with high resistant starch content to maintain healthy glucose homeostasis. Nutrition Bulletin, 2016, 41, 372-377.	1.8	6
168	Antioxidant performance in droplet-stabilized oil-in-water emulsions. LWT - Food Science and Technology, 2021, 139, 110541.	5.2	5
169	Mobility of adsorbed protein molecules as studied by fluorescence recovery after photobleaching (FRAP). Studies in Interface Science, 1998, 7, 267-301.	0.0	4
170	Foam formation in dough and bread quality. , 2003, , 321-351.		4
171	Colloidal dynamics of emulsion droplets in mouth. Journal of Colloid and Interface Science, 2022, 620, 153-167.	9.4	4
172	Terifiq Eu Project: Multiple Gel in Oil in Water Emulsions as Fat Replacers in Sauces and Ready Prepared Foods. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Food Science and Technology, 2016, 73, .	0.1	3
173	The Mouthâ€Gutâ€Brain model: An interdisciplinary approach to facilitate reformulation of reduced fat products. Nutrition Bulletin, 2019, 44, 241-248.	1.8	3
174	Molecular interactions in mixed protein + ionic surfactant interfaces. Special Publication - Royal Society of Chemistry, 0, , 143-151.	0.0	3
175	Engineering Interfacial Structures to Moderate Satiety. , 0, , 367-376.		3
176	Scratching the surface: Imaging interfacial structure using atomic force microscopy., 0,, 13-21.		2
177	Digestion and Metabolism of Pectin. , 2020, , 149-164.		1
178	A Simple and Effective Method for Observing Starch in Whole Plant Cells and in Raw and Processed Food Ingredients. Starch/Staerke, 2021, 73, 2000056.	2.1	1
179	Plant Food Structure and Lipid Digestibility. , 2021, , 113-131.		1
180	The Influence of Ethanol on the Foaming Properties of Beer Protein Fractions: A Comparison of Rudin and Microconductivity Methods of Foam Assessment. , 1996, 70, 531.		1

#	Article	IF	CITATIONS
181	Chapter 15. Role of Electrostatic Interactions on Molecular Self-Assembly of Protein + Phospholipid Films at the Air–Water Interface. , 0, , 227-243.		1
182	Surface Dilational Behaviour of a Mixture of Aqueous $\hat{l}^2\text{-Lactoglobulin}$ and Tween 20 Solutions. , 2005, , 354-364.		1
183	Protein/Emulsifier Interactions. , 2019, , 101-192.		1
184	Food Macromolecules and Colloids. Trends in Food Science and Technology, 1996, 7, 211.	15.1	0
185	SURFACTANT-PROTEIN INTERACTIONS AT AIR-WATER AND OIL-WATER INTERFACES OBSERVED BY ATOMIC FORCE MICROSCOPY., 2000,, 328-336.		О
186	Enumerating and indexing many-body intramolecular interactions: a graph theoretic approach. Journal of Mathematical Chemistry, 2015, 53, 1634-1648.	1.5	0
187	Bubble formation and stabilisation in bread dough. , 2007, , 691-705.		O
188	Influence of pH on the Molecular Structure and Bubble Stabilising Properties of Bovine $\hat{l}\pm$ -Lactalbumin. , 2008, , 131-140.		0
189	Enhancing Protein-protein Interactions at the Emulsion Interface to Resist Displacement by Biosurfactants. Special Publication - Royal Society of Chemistry, 2012, , 219-226.	0.0	O
190	Sixteen. Why Does Cold Milk Foam Better? Into the Nature of Milk Foam. , 2012, , .		0
191	Why Does Cold Milk Foam Better?. , 2013, , 117-122.		О
192	Spectroscopic investigation of proteins at oil-water interfaces. Special Publication - Royal Society of Chemistry, 2007, , 255-261.	0.0	0
193	Probing emulsion droplet interactions at the single droplet level. Special Publication - Royal Society of Chemistry, 0, , 85-96.	0.0	0
194	Chapter 26. Role of Protein-Stabilized Interfaces on the Microstructure and Rheology of Oil-in-Water Emulsions., 0,, 385-397.		O
195	Interfacial mechanisms underlying lipid damage of beer foam. Special Publication - Royal Society of Chemistry, 0, , 200-206.	0.0	0
196	Spatial distribution of mixed whey proteins at the air-water interface. Special Publication - Royal Society of Chemistry, 0, , 319-328.	0.0	0