Alberto Gutiérrez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8138909/publications.pdf

Version: 2024-02-01

24 papers 427 citations

758635 12 h-index 752256 20 g-index

24 all docs

24 docs citations

times ranked

24

476 citing authors

#	Article	IF	CITATIONS
1	Insights on novel type V deep eutectic solvents based on levulinic acid. Journal of Chemical Physics, 2022, 156, 094504.	1.2	11
2	A theoretical study on CO ₂ at Li ₄ SiO ₄ and Li ₃ NaSiO ₄ surfaces. Physical Chemistry Chemical Physics, 2022, 24, 13678-13689.	1.3	5
3	Insights on biodiesel blends with alkanol solvents. Journal of Molecular Liquids, 2021, 332, 115864.	2.3	8
4	Experimental and molecular modeling study on the binary mixtures of [EMIM][BF4] and [EMIM][TFSI] ionic liquids. Journal of Molecular Liquids, 2021, 334, 116049.	2.3	14
5	On the properties of N-methyl-2-pyrrolidonium hydrogen sulfate ionic liquid and alkanol mixtures. Journal of Molecular Liquids, 2021, 333, 115925.	2.3	2
6	Molecular dynamics study on water confinement in deep eutectic solvents. Journal of Molecular Liquids, 2021, 339, 116758.	2.3	19
7	Nanostructuring and macroscopic behavior of type V deep eutectic solvents based on monoterpenoids. Physical Chemistry Chemical Physics, 2021, 24, 512-531.	1.3	28
8	Theoretical study of hydrogen bonding in complex alcohol liquid mixtures. Journal of Molecular Liquids, 2020, 300, 112331.	2.3	3
9	Behavior of Antibiotics in Natural Deep Eutectic Solvents. Journal of Chemical & Engineering Data, 2020, 65, 4669-4683.	1.0	9
10	Insights on Betaine + Lactic Acid Deep Eutectic Solvent. Industrial & Engineering Chemistry Research, 2020, 59, 11880-11892.	1.8	21
11	Theoretical Study on Deep Eutectic Solvents as Vehicles for the Delivery of Anesthetics. Journal of Physical Chemistry B, 2020, 124, 1794-1805.	1.2	17
12	Insights on [BMIM][BF4] and [BMIM][PF6] ionic liquids and their binary mixtures with acetone and acetonitrile. Journal of Molecular Liquids, 2019, 294, 111632.	2.3	13
13	An experimental and theoretical investigation of the physicochemical properties on choline chloride – Lactic acid based natural deep eutectic solvent (NADES). Journal of Molecular Liquids, 2019, 290, 110916.	2.3	57
14	Design of arginine-based therapeutic deep eutectic solvents as drug solubilization vehicles for active pharmaceutical ingredients. Physical Chemistry Chemical Physics, 2019, 21, 10621-10634.	1.3	54
15	Insights into Carbon Nanotubes and Fullerenes in Molten Alkali Carbonates. Journal of Physical Chemistry C, 2019, 123, 9909-9918.	1.5	3
16	Insights on the mixtures of imidazolium based ionic liquids with molecular solvents. Journal of Molecular Liquids, 2018, 255, 199-207.	2.3	30
17	Molecular Modeling Analysis of CO ₂ Absorption by Glymes. Journal of Physical Chemistry B, 2018, 122, 1948-1957.	1.2	4
18	On the properties and structure of 2-hydroxyethylammonium formate ionic liquid. Journal of Molecular Liquids, 2018, 249, 233-244.	2.3	28

Alberto Gutiérrez

#	Article	IF	CITATIONS
19	A nanoscopic approach on benzene-toluene-xylenes extraction by sulfolane. Journal of Molecular Liquids, 2018, 249, 1039-1046.	2.3	8
20	A theoretical study on lidocaine solubility in deep eutectic solvents. Physical Chemistry Chemical Physics, 2018, 20, 27464-27473.	1.3	54
21	Theoretical Study on Molten Alkali Carbonate Interfaces. Langmuir, 2018, 34, 13065-13076.	1.6	5
22	Theoretical Study of Oil Desulfuration by Ammonium-Based Deep Eutectic Solvents. Energy & Energy & Fuels, 2018, 32, 7497-7507.	2.5	20
23	Insights into Glycol Ether–Alkanol Mixtures from a Combined Experimental and Theoretical Approach. Journal of Physical Chemistry B, 2017, 121, 5601-5612.	1.2	6
24	Microscopic Characterization of CO ₂ and H ₂ S Removal by Sulfolane. Energy & Supply Fuels, 2017, 31, 9800-9813.	2.5	8