
Jean François Feller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8138760/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Review of Nanocarbon-Based Solutions for the Structural Health Monitoring of Composite Parts Used in Renewable Energies. Journal of Composites Science, 2022, 6, 32.	1.4	8
2	Impact and strain monitoring in glass fiber reinforced epoxy laminates with embedded quantum resistive sensors (QRSs). Composites Science and Technology, 2022, 221, 109352.	3.8	5
3	A Review of In-Service Coating Health Monitoring Technologies: Towards "Smart―Neural-Like Networks for Condition-Based Preventive Maintenance. Coatings, 2022, 12, 565.	1.2	0
4	Strain Mapping and Damage Tracking in Carbon Fiber Reinforced Epoxy Composites during Dynamic Bending Until Fracture with Quantum Resistive Sensors in Array. Journal of Composites Science, 2021, 5, 60.	1.4	3
5	Boosting Selectivity and Sensitivity to Biomarkers of Quantum Resistive Vapour Sensors Used for Volatolomics with Nanoarchitectured Carbon Nanotubes or Graphene Platelets Connected by Fullerene Junctions. Chemosensors, 2021, 9, 66.	1.8	3
6	Upgrading of diesel engine exhaust waste into onion-like carbon nanoparticles for integrated degradation sensing in nano-biocomposites. New Journal of Chemistry, 2021, 45, 3675-3682.	1.4	26
7	Graphene and metal organic frameworks (MOFs) hybridization for tunable chemoresistive sensors for detection of volatile organic compounds (VOCs) biomarkers. Carbon, 2020, 159, 333-344.	5.4	97
8	3D sprayed polyurethane functionalized graphene / carbon nanotubes hybrid architectures to enhance the piezo-resistive response of quantum resistive pressure sensors. Carbon, 2020, 168, 564-579.	5.4	28
9	Multifunctional Carbon Nanotubes Enhanced Structural Composites with Improved Toughness and Damage Monitoring. Journal of Composites Science, 2019, 3, 109.	1.4	10
10	Green carbon nanostructured quantum resistive sensors to detect volatile biomarkers. Sustainable Materials and Technologies, 2018, 16, 1-11.	1.7	40
11	Crossed investigation of damage in composites with embedded quantum resistive strain sensors (sQRS), acoustic emission (AE) and digital image correlation (DIC). Composites Science and Technology, 2018, 160, 79-85.	3.8	32
12	An Electronic Nose Prototype for the On-Field Detection of Nerve Agents. , 2018, , .		2
13	A functionalized carbon nanotube based electronic nose for the detection of nerve agents. , 2018, , .		1
14	Interfacial nanocomposite sensors (sQRS) for the core monitoring of polymer composites' fatigue and damage analysis. Nanocomposites, 2018, 4, 69-79.	2.2	7
15	Influence of Water Molecules on the Detection of Volatile Organic Compounds (VOC) Cancer Biomarkers by Nanocomposite Quantum Resistive Vapor Sensors vQRS. Chemosensors, 2018, 6, 64.	1.8	12
16	6.10 Electrically Conductive Nanocomposites. , 2018, , 248-314.		3
17	Tribological response of an epoxy matrix filled with graphite and/or carbon nanotubes. Friction, 2017, 5, 171-182.	3.4	57
18	Sulfonated poly(ether ether ketone) [SPEEK] nanocomposites based on hybrid nanocarbons for the detection and discrimination of some lung cancer VOC biomarkers. Journal of Materials Chemistry B, 2017, 5, 348-359.	2.9	31

#	Article	IF	CITATIONS
19	vQRS Based on Hybrids of CNT with PMMA-POSS and PS-POSS Copolymers to Reach the Sub-PPM Detection of Ammonia and Formaldehyde at Room Temperature Despite Moisture. Chemosensors, 2017, 5, 22.	1.8	12
20	Vapor and Pressure Sensors Based on Cellulose Nanofibers and Carbon Nanotubes Aerogel with Thermoelectric Properties. Journal of Renewable Materials, 2017, , .	1.1	8
21	Flax fibers – epoxy with embedded nanocomposite sensors to design lightweight smart bio-composites. Nanocomposites, 2016, 2, 125-134.	2.2	37
22	Enhancing the sensitivity of graphene/polyurethane nanocomposite flexible piezo-resistive pressure sensors with magnetite nano-spacers. Carbon, 2016, 108, 450-460.	5.4	87
23	Chemical Sensors Based on New Polyamides Biobased on (Z) Octadecâ€9â€Enedioic Acid and βâ€Cyclodextrin. Macromolecular Chemistry and Physics, 2016, 217, 1620-1628.	1.1	18
24	Graphene Oxide-Assisted Liquid Phase Exfoliation of Graphite into Graphene for Highly Conductive Film and Electromechanical Sensors. ACS Applied Materials & Interfaces, 2016, 8, 16521-16532.	4.0	98
25	Robustness of carbon nanotube-based sensor to probe composites' interfacial damage in situ. Journal of Composite Materials, 2016, 50, 109-113.	1.2	15
26	Non-intrusive health monitoring of infused composites with embedded carbon quantum piezo-resistive sensors. Composites Science and Technology, 2016, 123, 286-294.	3.8	71
27	Engineering of graphene/epoxy nanocomposites with improved distribution of graphene nanosheets for advanced piezo-resistive mechanical sensing. Journal of Materials Chemistry C, 2016, 4, 3422-3430.	2.7	62
28	Spray layer-by-layer assembly of POSS functionalized CNT quantum chemo-resistive sensors with tuneable selectivity and ppm resolution to VOC biomarkers. Sensors and Actuators B: Chemical, 2016, 222, 362-373.	4.0	42
29	Core-shell nanostructured hybrid composites for volatile organic compound detection. International Journal of Nanomedicine, 2015, 10 Spec Iss, 203.	3.3	4
30	Gas barrier efficiency of clay- and graphene-poly(isobutylene-co-isoprene) nanocomposite membranes evidenced by a quantum resistive vapor sensor cell. Nanocomposites, 2015, 1, 96-105.	2.2	7
31	Tailoring selectivity of sprayed carbon nanotube sensors (CNT) towards volatile organic compounds (VOC) with surfactants. Sensors and Actuators B: Chemical, 2015, 220, 840-849.	4.0	52
32	Hybrid Films of Graphene and Carbon Nanotubes for High Performance Chemical and Temperature Sensing Applications. Small, 2015, 11, 3485-3493.	5.2	54
33	Graphene Filled Polymers for Vapor/Gas Sensor Applications. , 2015, , 253-275.		1
34	High stability silver nanoparticles–graphene/poly(ionic liquid)-based chemoresistive sensors for volatile organic compounds' detection. Analytical and Bioanalytical Chemistry, 2014, 406, 3995-4004.	1.9	50
35	Graphene–Fe3O4/PIL–PEDOT for the design of sensitive and stable quantum chemo-resistive VOC sensors. Carbon, 2014, 74, 104-112.	5.4	59
36	Ultrasensitive QRS made by supramolecular assembly of functionalized cyclodextrins and graphene for the detection of lung cancer VOC biomarkers. Journal of Materials Chemistry B, 2014, 2, 6571-6579.	2.9	48

#	Article	IF	CITATIONS
37	Selectivity of Chemoresistive Sensors Made of Chemically Functionalized Carbon Nanotube Random Networks for Volatile Organic Compounds (VOC). Chemosensors, 2014, 2, 26-40.	1.8	27
38	An e-nose made of carbon nanotube based quantum resistive sensors for the detection of eighteen polar/nonpolar VOC biomarkers of lung cancer. Journal of Materials Chemistry B, 2013, 1, 4563.	2.9	115
39	Electromagnetic properties of Fe ₃ O ₄ â€functionalized graphene and its composites with a conducting polymer. Journal of Polymer Science Part A, 2013, 51, 3767-3767.	2.5	0
40	Poly(lactic acid)/carbon nanotube nanocomposites with integrated degradation sensing. Polymer, 2013, 54, 6818-6823.	1.8	88
41	Hybrid film of chemically modified graphene and vapor-phase-polymerized PEDOT for electronic nose applications. Organic Electronics, 2013, 14, 2789-2794.	1.4	32
42	Flexible latex—polyaniline segregated network composite coating capable of measuring large strain on epoxy. Smart Materials and Structures, 2013, 22, 015008.	1.8	31
43	Ecoâ€friendly conductive polymer nanocomposites (CPC) for solar absorbers design. Polymers for Advanced Technologies, 2013, 24, 638-645.	1.6	13
44	Design and study of an electrical liquid heater using conductive polymer composite tubes. Applied Thermal Engineering, 2013, 54, 507-515.	3.0	6
45	Development of poly(isobutylene-co-isoprene)/reduced graphene oxide nanocomposites for barrier, dielectric and sensingapplications. Materials Letters, 2013, 96, 109-112.	1.3	110
46	Simple technique for the simultaneous determination of solvent diffusion coefficient in polymer by Quantum Resistive Sensors and FTâ€IR spectroscopy. Polymers for Advanced Technologies, 2013, 24, 487-494.	1.6	12
47	Sensing Skin for Strain Monitoring Made of PC–CNT Conductive Polymer Nanocomposite Sprayed Layer by Layer. ACS Applied Materials & Interfaces, 2012, 4, 3508-3516.	4.0	65
48	Graphene quantum resistive sensing skin for the detection of alteration biomarkers. Journal of Materials Chemistry, 2012, 22, 21754.	6.7	115
49	Electronic noses for VOCs detection based on the nanoparticles hybridized graphene composites. , 2012, , .		4
50	Fine control of carbon nanotubes–polyelectrolyte sensors sensitivity by electrostatic layer by layer assembly (eLbL) for the detection of volatile organic compounds (VOC). Talanta, 2012, 88, 396-402.	2.9	47
51	Electromagnetic properties of Fe ₃ O ₄ â€functionalized graphene and its composites with a conducting polymer. Journal of Polymer Science Part A, 2012, 50, 927-935.	2.5	70
52	Controlled conductive junction gap for chitosan–carbon nanotube quantum resistive vapour sensors. Journal of Materials Chemistry, 2012, 22, 10656.	6.7	50
53	Tailoring the chemo-resistive response of self-assembled polysaccharide-CNT sensors by chain conformation at tunnel junctions. Carbon, 2012, 50, 3627-3634.	5.4	38
54	Thermoelectric behaviour of melt processed carbon nanotube/graphite/poly(lactic acid) conductive biopolymer nanocomposites (CPC). Materials Letters, 2012, 67, 210-214.	1.3	88

Jean François Feller

#	Article	IF	CITATIONS
55	Poly(lactic acid)–multi-wall carbon nanotube conductive biopolymer nanocomposite vapour sensors. Sensors and Actuators B: Chemical, 2012, 161, 621-628.	4.0	127
56	Novel architecture of carbon nanotube decorated poly(methyl methacrylate) microbead vapour sensors assembled by spray layer by layer. Journal of Materials Chemistry, 2011, 21, 4142.	6.7	67
57	Conductive biopolymer nanocomposites for sensors. , 2011, , 368-399.		4
58	Novel e-nose for the discrimination of volatile organic biomarkers with an array of carbon nanotubes (CNT) conductive polymer nanocomposites (CPC) sensors. Sensors and Actuators B: Chemical, 2011, 159, 213-219.	4.0	103
59	Rectangular‧haped Polyaniline Tubes Covered with Nanorods and their Electrorheology. Macromolecular Chemistry and Physics, 2011, 212, 2300-2307.	1.1	36
60	Chemo-sensitivity of latex-based films containing segregated networks of carbon nanotubes. Sensors and Actuators B: Chemical, 2011, 155, 28-36.	4.0	36
61	Conductive eco-polymer composites: wear behaviour of recycled polycarbonate/crushed rubber microparticles. Plastics, Rubber and Composites, 2011, 40, 139-145.	0.9	Ο
62	Polyaniline nanoparticle–carbon nanotube hybrid network vapour sensors with switchable chemo-electrical polarity. Nanotechnology, 2010, 21, 255501.	1.3	46
63	Conductive bio-Polymer nano-Composites (CPC): Chitosan-carbon nanotube transducers assembled via spray layer-by-layer for volatile organic compound sensing. Talanta, 2010, 81, 908-915.	2.9	101
64	Rheological properties of conductive polymer composite (CPC) filled with double percolated network of carbon nanoparticles and boron nitride powder. E-Polymers, 2009, 9, .	1.3	3
65	Conductive Polymer nano-bioComposites (CPC): Chitosan-carbon nanoparticle a good candidate to design polar vapour sensors. Sensors and Actuators B: Chemical, 2009, 138, 138-147.	4.0	115
66	Vapour sensing with conductive polymer nanocomposites (CPC): Polycarbonate-carbon nanotubes transducers with hierarchical structure processed by spray layer by layer. Sensors and Actuators B: Chemical, 2009, 140, 451-460.	4.0	82
67	Carbon nanotubes/poly(ε-caprolactone) composite vapour sensors. Carbon, 2009, 47, 1930-1942.	5.4	157
68	Current passage tubes in conductive polymer composite for fluid heating. Energy Conversion and Management, 2008, 49, 493-505.	4.4	15
69	Conductive polymer composites with double percolated architecture of carbon nanoparticles and ceramic microparticles for high heat dissipation and sharp PTC switching. Smart Materials and Structures, 2008, 17, 025011.	1.8	46
70	Influence of carbon nanotube grafting on chemo-electrical properties of Conductive Polymer nanoComposites. Materials Research Society Symposia Proceedings, 2008, 1143, 20201.	0.1	1
71	Electrothermal Behavior of Conductive Polymer Composite Heating Elements Filled with Ceramic Particles. Journal of Thermophysics and Heat Transfer, 2008, 22, 545-554.	0.9	4
72	Thermo- and chemo-electrical behavior of carbon nanotube filled co-continuous conductive polymer nanocomposites (CPC) to develop amperometric sensors. Materials Research Society Symposia Proceedings, 2008, 1143, 51401.	0.1	4

#	Article	IF	CITATIONS
73	Conducting Polymer nanoComposites (CPC): Nanocharacterisation of layer by layer sprayed PMMA-CNT vapour sensors by Atomic force Microscopy in current Sensing Mode (CS-AFM). Materials Research Society Symposia Proceedings, 2008, 1143, 20601.	0.1	1
74	Investigation of the polycarbonate/crushed-rubber-particle interphase by nanoindentation. Journal of Applied Polymer Science, 2007, 103, 2687-2694.	1.3	8
75	Ecoâ€plastics: Morphological and mechanical properties of recycled poly(carbonate)â€crushed rubber (rPCâ€CR) blends. Polymer Engineering and Science, 2007, 47, 1768-1776.	1.5	11
76	Conductive polymer composites obtained from recycled poly(carbonate) and rubber blends for heating and sensing applications. Polymers for Advanced Technologies, 2006, 17, 727-731.	1.6	45
77	Thermal conductivity enhancement of electrically insulating syndiotactic poly(styrene) matrix for diphasic conductive polymer composites. Polymers for Advanced Technologies, 2006, 17, 732-745.	1.6	76
78	Conductive polymer composites: Electrical, thermal, and rheological study of injected isotactic poly(propylene)/long stainless-steel fibers for electromagnetic interferences shielding. Journal of Applied Polymer Science, 2006, 100, 3280-3287.	1.3	25
79	Influence of Carbon-Black Nanoparticles on Poly(butylene terephthalate) Fractionated Crystallization in Bicomponent Poly(butylene terephthalate)/Poly[ethylene-co-(ethyl acrylate)] Blends. Macromolecular Materials and Engineering, 2006, 291, 1375-1387.	1.7	11
80	Elaboration and Characterization of Starch/ Poly(caprolactone) Blends. Macromolecular Symposia, 2005, 222, 233-238.	0.4	13
81	Simulation of Electrical and Thermal Behavior of Poly(propylene) / Carbon Filler Conductive Polymer Composites. Macromolecular Symposia, 2005, 222, 187-194.	0.4	4
82	Simulation of Electrical and Thermal Behavior of Conductive Polymer Composites Heating Elements. Journal of Thermophysics and Heat Transfer, 2005, 19, 375-381.	0.9	20
83	Electrical response of Poly(styrene)/carbon black conductive polymer composites (CPC) to methanol, toluene, chloroform and styrene vapors as a function of filler nature and matrix tacticity. Synthetic Metals, 2005, 154, 193-196.	2.1	49
84	Smart Poly(styrene)/Carbon Black Conductive Polymer Composites Films for Styrene Vapour Sensing. Macromolecular Symposia, 2005, 222, 273-280.	0.4	20
85	Starch Modification, Destructuration and Hydrolysis duringO-Formylation. Starch/Staerke, 2004, 56, 389-398.	1.1	20
86	Conductive polymer composites: Influence of extrusion conditions on positive temperature coefficient effect of poly(butylene terephthalate)/poly(olefin)-carbon black blends. Journal of Applied Polymer Science, 2004, 91, 2151-2157.	1.3	44
87	Evolution of electrical properties of some conductive polymer composite textiles with organic solvent vapours diffusion. Sensors and Actuators B: Chemical, 2004, 97, 231-242.	4.0	84
88	Rheological properties of silica dispersions stabilized by stereoregular poly(methyl methacrylate). Journal of Colloid and Interface Science, 2004, 272, 218-224.	5.0	16
89	Coupling ability of silane grafted poly(propene) at glass fibers/poly(propene) interface. Composites Part A: Applied Science and Manufacturing, 2004, 35, 1-10.	3.8	33
90	Influence of processing conditions on sensitivity of conductive polymer composites to organic solvent vapours. Synthetic Metals, 2004, 144, 81-88.	2.1	46

Jean François Feller

#	Article	IF	CITATIONS
91	Influence of clay nanofiller on electrical and rheological properties of conductive polymer composite. Materials Letters, 2004, 58, 739-745.	1.3	87
92	Rheological and calorimetric properties of recycled bisphenol A poly(carbonate). Polymer Degradation and Stability, 2003, 82, 99-104.	2.7	29
93	Characterization of electrical and thermal properties of extruded tapes of thermoplastic conductive polymer composites (CPC). Polymer Testing, 2003, 22, 831-837.	2.3	33
94	Mechanical and rheological properties of poly(ethylene-co-ethyl acrylate) as a function of carbon black content. Macromolecular Symposia, 2003, 203, 317-324.	0.4	4
95	Conductive polymer composites(CPC): influence of processing conditions, shear rate and temperature on electrical properties of poly(butylene terephthalate)/poly(amide12-b-tetramethyleneglycol)– carbon black blends. Macromolecular Symposia, 2003, 203, 309-316.	0.4	18
96	Conductive polymer composites: comparative study of poly(ester)-short carbon fibres and poly(epoxy)-short carbon fibres mechanical and electrical properties. Materials Letters, 2002, 57, 64-71.	1.3	89
97	Conductive polymer composites (CPCs): comparison of electrical properties of poly(ethylene-co-ethyl) Tj ETQq1 1 black. Polymers for Advanced Technologies, 2002, 13, 714-724.	0.784314 1.6	rgBT /Overi 58
98	Crystallization kinetics of poly(butylene terephthalate) (PBT): Influence of additives and free carboxylic acid chain ends. Polymer Engineering and Science, 2001, 41, 178-191.	1.5	25
99	Poly(butylene terephthalate)/ poly(ethylene-co-alkyl acrylate)/ carbon black conductive composites: Influence of composition and morphology on electrical properties. Polymer Engineering and Science, 2001, 41, 1124-1132.	1.5	27
100	Carbon black-filled poly(ethylene-co-alkyl acrylate) composites: Calorimetric studies. Journal of Applied Polymer Science, 2001, 79, 779-793.	1.3	19
101	Measuring water diffusion in polymer films on the substrate by internal reflection fourier transform infrared spectroscopy. Journal of Applied Polymer Science, 1997, 66, 2465-2473.	1.3	61
102	Silane-Grafted Isotactic Polypropylene Used as a Coupling Agent on Glass. Consequences on The Interfacial Adhesion. Journal of Adhesion, 1996, 58, 299-313.	1.8	13
103	Coupling agents for polypropylene/glass fiber composites: synthesis of functionalized isotactic polypropene and crystallization. Composite Interfaces, 1995, 3, 121-134.	1.3	10
104	Thermophysical and Radiative Properties of Conductive Biopolymer Composite. Materials Science Forum, 0, 714, 115-122.	0.3	17