Robert Gorkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8138401/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Can you design the perfect condom? Engaging young people to inform safe sexual health practice and innovation. Sex Education, 2022, 22, 110-122.	1.5	4
2	Polymer electrolytes for sodium-ion batteries. Energy Storage Materials, 2021, 36, 10-30.	9.5	82
3	The Drone Revolution of Shark Science: A Review. Drones, 2021, 5, 8.	2.7	66
4	Sharkeye: Real-Time Autonomous Personal Shark Alerting via Aerial Surveillance. Drones, 2020, 4, 18.	2.7	26
5	A simple technique for development of fibres with programmable microsphere concentration gradients for local protein delivery. Journal of Materials Chemistry B, 2019, 7, 556-565.	2.9	3
6	3D printing and the third mission: The university in the materialization of intellectual capital. Technological Forecasting and Social Change, 2017, 123, 240-249.	6.2	33
7	New strategies for stationary phase integration within centrifugal microfluidic platforms for applications in sample preparation and pre-concentration. Analytical Methods, 2017, 9, 1998-2006.	1.3	13
8	3D printing of tough hydrogel composites with spatially varying materials properties. Additive Manufacturing, 2017, 14, 24-30.	1.7	59
9	In vivo biocompatibility of porous and non-porous polypyrrole based trilayered actuators. Journal of Materials Science: Materials in Medicine, 2017, 28, 172.	1.7	9
10	4D Printing of Reversible Shape Morphing Hydrogel Structures. Macromolecular Materials and Engineering, 2017, 302, 1600212.	1.7	190
11	3D/4D Printing Hydrogel Composites: A Pathway to Functional Devices. MRS Advances, 2016, 1, 521-526.	0.5	31
12	The adoption process and impact of additive manufacturing on manufacturing systems. Journal of Manufacturing Technology Management, 2016, 27, 969-989.	3.3	89
13	Cell compatible encapsulation of filaments into 3D hydrogels. Biofabrication, 2016, 8, 025013.	3.7	3
14	Brain on a bench top. Materials Today, 2016, 19, 124-125.	8.3	2
15	3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials, 2015, 67, 264-273.	5.7	357
16	4D Printing with Mechanically Robust, Thermally Actuating Hydrogels. Macromolecular Rapid Communications, 2015, 36, 1211-1217.	2.0	423
17	An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing. Journal of Materials Chemistry B, 2015, 3, 4105-4117.	2.9	270
18	A bio-friendly, green route to processable, biocompatible graphene/polymer composites. RSC Advances, 2015, 5, 45284-45290.	1.7	44

ROBERT GORKIN

#	Article	IF	CITATIONS
19	Poly(3,4-ethylenedioxythiophene):dextran sulfate (PEDOT:DS) – A highly processable conductive organic biopolymer. Acta Biomaterialia, 2015, 14, 33-42.	4.1	74
20	An integrated centrifugo-opto-microfluidic platform for arraying, analysis, identification and manipulation of individual cells. Lab on A Chip, 2015, 15, 378-381.	3.1	52
21	Strong tough gels for 3D tissue constructs. Materials Research Society Symposia Proceedings, 2014, 1622, 49-53.	0.1	0
22	Electrical conductivity, impedance, and percolation behavior of carbon nanofiber and carbon nanotube containing gellan gum hydrogels. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 864-871.	2.4	38
23	Three dimensional (3D) printed electrodes for interdigitated supercapacitors. Electrochemistry Communications, 2014, 41, 20-23.	2.3	179
24	Graphene oxide dispersions: tuning rheology to enable fabrication. Materials Horizons, 2014, 1, 326-331.	6.4	276
25	Printed ionic-covalent entanglement hydrogels from carrageenan and an epoxy amine. RSC Advances, 2014, 4, 38088-38092.	1.7	53
26	Three-Dimensional Printing Fiber Reinforced Hydrogel Composites. ACS Applied Materials & Interfaces, 2014, 6, 15998-16006.	4.0	172
27	Centrifugal automation of a triglyceride bioassay on a low-cost hybrid paper-polymer device. Microfluidics and Nanofluidics, 2014, 16, 895-905.	1.0	25
28	Capacitive behavior of latex/single-wall carbon nanotube stretchable electrodes. Electrochimica Acta, 2014, 137, 372-380.	2.6	19
29	Geometry effects on blood separation rate on a rotating disc. Sensors and Actuators B: Chemical, 2013, 178, 648-655.	4.0	31
30	Comprehensive integration of homogeneous bioassays via centrifugo-pneumatic cascading. Lab on A Chip, 2013, 13, 685-694.	3.1	57
31	Fluidic Automation of Nitrate and Nitrite Bioassays in Whole Blood by Dissolvable-Film Based Centrifugo-Pneumatic Actuation. Sensors, 2013, 13, 11336-11349.	2.1	23
32	Centrifugo-pneumatic valving utilizing dissolvable films. Lab on A Chip, 2012, 12, 2894.	3.1	113
33	Design and fabrication of a <scp>COP</scp> â€based microfluidic chip: Chronoamperometric detection of <scp>T</scp> roponin <scp>T</scp> . Electrophoresis, 2012, 33, 3187-3194.	1.3	19
34	Centrifugal microfluidics for cell analysis. Current Opinion in Chemical Biology, 2012, 16, 409-414.	2.8	80
35	Fabricating electrodes for amperometric detection in hybrid paper/polymer lab-on-a-chip devices. Lab on A Chip, 2012, 12, 3281.	3.1	43
36	A centrifugo-pneumatic cascade for fully integrated and multiplexed biological analysis. , 2012, , .		2

ROBERT GORKIN

#	Article	IF	CITATIONS
37	Centrifugally enhanced paper microfluidics. , 2012, , .		6
38	Optical sensing system based on wireless paired emitter detector diode device and ionogels for lab-on-a-disc water quality analysis. Lab on A Chip, 2012, 12, 5069.	3.1	57
39	Suction-enhanced siphon valves for centrifugal microfluidic platforms. Microfluidics and Nanofluidics, 2012, 12, 345-354.	1.0	27
40	Infrared controlled waxes for liquid handling and storage on a CD-microfluidic platform. Lab on A Chip, 2011, 11, 723-726.	3.1	94
41	A wireless paired emitter detector diode device as an optical sensor for Lab-on-a-disc applications. , 2011, , .		3
42	Thermo-pneumatic pumping in centrifugal microfluidic platforms. Microfluidics and Nanofluidics, 2011, 11, 643-652.	1.0	77
43	Rotationally controlled centrifugo-pneumatic valving utilizing dissolvable films. , 2011, , .		1
44	Serial siphon valving for centrifugal microfluidic platforms. Microfluidics and Nanofluidics, 2010, 9, 55-63.	1.0	123
45	Pneumatic pumping in centrifugal microfluidic platforms. Microfluidics and Nanofluidics, 2010, 9, 541-549.	1.0	81
46	Validation of a centrifugal microfluidic sample lysis and homogenization platform for nucleic acidextraction with clinical samples. Lab on A Chip, 2010, 10, 363-371.	3.1	104
47	Centrifugal microfluidics for biomedical applications. Lab on A Chip, 2010, 10, 1758.	3.1	617
48	The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform. Lab on A Chip, 2010, 10, 1030.	3.1	129
49	The integration of 3D carbon Dielectrophoresis on a rotating platform. , 2009, , .		1
50	Capillary filling in centrifugally actuated microfluidic devices with dynamically evolving contact line motion. Journal of Applied Physics, 2009, 105, .	1.1	24
51	Carbon microelectromechanical systems as a substratum for cell growth. Biomedical Materials (Bristol), 2008, 3, 034116.	1.7	58