Kedarnath Gotluru

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/813839/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pyridyl and pyrimidyl chalcogen (Se and Te) compounds: A family of multi utility molecules. Coordination Chemistry Reviews, 2013, 257, 1409-1435.	18.8	109
2	Copper(i) 2-pyridyl selenolates and tellurolates: Synthesis, structures and their utility as molecular precursors for the preparation of copper chalcogenide nanocrystals and thin films. Dalton Transactions, 2011, 40, 9194.	3.3	62
3	Diorganotin(iv) 2-pyridyl selenolates: synthesis, structures and their utility as molecular precursors for the preparation of tin selenide nanocrystals and thin films. Dalton Transactions, 2012, 41, 12129.	3.3	51
4	Group 12 metal monoselenocarboxylates: synthesis, characterization, structure and their transformation to metal selenide (MSe; M = Zn, Cd, Hg) nanoparticles. Dalton Transactions, 2006, , 2714.	3.3	46
5	Reactivity of dipyrimidyldiselenides with [M(PPh3)4] and 2-pyrimidylchalcogenolates with [MCl2(diphosphine)] (MÂ=ÂPd or Pt). Journal of Organometallic Chemistry, 2012, 717, 180-186.	1.8	36
6	Monomeric pyridyl-2-selenolate complexes of cadmium and mercury: Synthesis, characterization and their conversion to metal selenide nanoparticles. Inorganica Chimica Acta, 2011, 365, 333-339.	2.4	34
7	Reactivity of Dipyridyl Ditellurides with (Diphosphine)Pt ⁰ and 2-Pyridyltellurolates with (Diphosphine)PtCl ₂ and Isolation of Different Structural Motifs of Platinum(II) Complexes. Organometallics, 2012, 31, 1743-1750.	2.3	32
8	Indium(III) (3-methyl-2-pyridyl)selenolate: Synthesis, structure and its utility as a single source precursor for the preparation of In2Se3 nanocrystals and a dual source precursor with [Cu{SeC5H3(Me-3)N}]4 for the preparation of CuInSe2. Journal of Organometallic Chemistry, 2013, 747, 113-118.	1.8	28
9	Synthesis, structures and DFT calculations of 2-(4,6-dimethyl pyrimidyl)selenolate complexes of Cu(<scp>i</scp>), Ag(<scp>i</scp>) and Au(<scp>i</scp>) and their conversion into metal selenide nanocrystals. Dalton Transactions, 2014, 43, 6525-6535.	3.3	28
10	Bis(3-methyl-2-pyridyl)ditelluride and pyridyl tellurolate complexes of zinc, cadmium, mercury: Synthesis, characterization and their conversion to metal telluride nanoparticles. Dalton Transactions, 2009, , 8378.	3.3	27
11	Zinc, Cadmium and Mercury Dithiocarboxylates: Synthesis, Characterization, Structure and Their Transformation to Metal Sulfide Nanoparticles. European Journal of Inorganic Chemistry, 2007, 2007, 1566-1575.	2.0	25
12	Diorganotin(<scp>iv</scp>) 4,6-dimethyl-2-pyrimidyl selenolates: synthesis, structures and their utility as molecular precursors for the preparation of SnSe ₂ nano-sheets and thin films. RSC Advances, 2016, 6, 8367-8376.	3.6	21
13	Facile one-pot synthesis of tin selenide nanostructures using diorganotin bis(5-methyl-2-pyridylselenolates). Journal of Organometallic Chemistry, 2018, 873, 15-21.	1.8	20
14	Synthesis and Characterization of Metal Selenide (ZnSe, CdSe, HgSe) Nanoparticles. Journal of Nanoscience and Nanotechnology, 2006, 6, 1031-1037.	0.9	16
15	Di- <i>tert</i> -butyltin(<scp>iv</scp>) 2-pyridyl and 4,6-dimethyl-2-pyrimidyl thiolates: versatile single source precursors for the preparation of SnS nanoplatelets as anode material for lithium ion batteries. Dalton Transactions, 2021, 50, 13073-13085.	3.3	15
16	Synthesis, Characterization and Photo Response Behaviour of InSe and CuInSe ₂ Nanostructures Using Tris(5â€methylâ€2â€pyridylselenolato)indium(III) as Molecular Precursor. ChemistrySelect, 2018, 3, 10394-10401.	1.5	14
17	Accessing photoresponsive copper selenide nanomaterials and thin films through tetranuclear Cu(I) pyridylselenolate cluster. Journal of Materials Science, 2020, 55, 15439-15453.	3.7	14
18	Diorganotin(<scp>iv</scp>) 2-pyridyl and 2-pyrimidyl thiolates: synthesis, structures and their utility as molecular precursors for the preparation of tin sulfide nanosheets. RSC Advances, 2015, 5, 62882-62890.	3.6	12

Kedarnath Gotluru

#	Article	IF	CITATIONS
19	Accessing copper-tin-sulfide nanostructures from diorganotin(IV) and copper(I) 2-pyrazinyl thiolates. Journal of Organometallic Chemistry, 2019, 887, 24-31.	1.8	12
20	Dimethyltin(<scp>iv</scp>)-4,6-dimethyl-2-pyridylselenolate: an efficient single source precursor for the preparation of SnSe nanosheets as anode material for lithium ion batteries. Dalton Transactions, 2021, 50, 15730-15742.	3.3	12
21	Synthesis of photo-responsive indium selenides (InSe and In ₂ Se ₃) from tris(4,6-dimethyl-2-pyrimidylselenolato)indium(<scp>iii</scp>) as a molecular precursor. New Journal of Chemistry, 2022, 46, 3871-3881.	2.8	10
22	Synthesis, characterization and photovoltaic properties of phase pure Cu2SnSe3 nanostructures using molecular precursors. Journal of Materials Science: Materials in Electronics, 2018, 29, 8937-8946.	2.2	8
23	Germanium Xanthates: Versatile Precursors for Photo Responsive Germanium Sulfide Nanostructures. ChemistrySelect, 2017, 2, 4598-4604.	1.5	7
24	Synthesis and Characterization of Some BODIPYâ€based Substituted Salicylaldimine Schiff Bases. Journal of Heterocyclic Chemistry, 2019, 56, 2499-2507.	2.6	5
25	Molecular precursor driven synthesis of phase pure tin sulfide nanosheets and investigation of their photoresponsive behaviour. Polyhedron, 2022, 220, 115833.	2.2	5
26	Applications of metal selenium/tellurium compounds in materials science. Physical Sciences Reviews, 2019, 4, .	0.8	4
27	A Highly Active Nitrogenâ€Doped Mixedâ€Phase Mixedâ€Valence Cobalt Nanocatalyst for Olefins and Nitroarenes Hydrogenation. ChemistrySelect, 2022, 7, .	1.5	2
28	Synthesis and characterization of methyl indium 4,6-dimethyl-2-pyrimidyl selenolates and its utility for indium selenide, CuInSe2 nanostructures and indium selenide thin films. Journal of Materials Research, 2022, 37, 1341-1356.	2.6	1
29	Synthesis of undoped and manganese-doped hgte nanoparticles using [Hg(TeCH2CH2NMe2)2] as a single source precursor. Journal of Nanoscience and Nanotechnology, 2008, 8, 4500-5.	0.9	0