
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8138280/publications.pdf Version: 2024-02-01

MITATINO D CIBI

#	Article	IF	CITATIONS
1	Enantioselective Radical Reactions Using Chiral Catalysts. Chemical Reviews, 2022, 122, 5842-5976.	47.7	136
2	Towards Upcycling Biomassâ \in Derived Crosslinked Polymers with Light. Angewandte Chemie, 2022, 134, .	2.0	2
3	Towards Upcycling Biomassâ€Derived Crosslinked Polymers with Light. Angewandte Chemie - International Edition, 2022, 61, .	13.8	9
4	Poly (vinyl ethers) based on the biomass-derived compound, eugenol, and their one-component, ambient-cured surface coatings. Progress in Organic Coatings, 2022, 170, 106996.	3.9	7
5	The Sizeâ€Accelerated Kinetic Resolution of Secondary Alcohols. Angewandte Chemie - International Edition, 2021, 60, 774-778.	13.8	17
6	Evaluation of 3-Allyl-5-vinylveratrole in Latex Copolymerization with an Acrylic Monomer from High Oleic Soybean Oil. ACS Sustainable Chemistry and Engineering, 2021, 9, 7003-7011.	6.7	4
7	Propargyl Radicals in Organic Synthesis. European Journal of Organic Chemistry, 2021, 2021, 3359-3375.	2.4	11
8	Bio-Based Furanic Di(meth)acrylates as Reactive Diluents for UV Curable Coatings: Synthesis and Coating Evaluation. ACS Sustainable Chemistry and Engineering, 2021, 9, 15537-15544.	6.7	12
9	Die grĶğenbeschleunigte kinetische Racematspaltung sekundĤer Alkohole. Angewandte Chemie, 2021, 133, 786-791.	2.0	4
10	Novel Biobased Furanic Diols as Potential Alternatives to BPA: Synthesis and Endocrine Activity Screening. ACS Sustainable Chemistry and Engineering, 2020, 8, 18824-18829.	6.7	14
11	A Preliminary Environmental Assessment of Epoxidized Sucrose Soyate (ESS)-Based Biocomposite. Molecules, 2020, 25, 2797.	3.8	11
12	Structurally unique PARPâ€1 inhibitors for the treatment of prostate cancer. Pharmacology Research and Perspectives, 2020, 8, e00586.	2.4	2
13	Special issue on organic free radical chemistry. Science China Chemistry, 2019, 62, 1423-1424.	8.2	0
14	Asymmetric Synthesis of 2,3â€Disubstituted Cyclic Ketones by Enantioselective Conjugate Radical Additions. Helvetica Chimica Acta, 2019, 102, e1900223.	1.6	2
15	Biobased, Nonisocyanate, 2K Polyurethane Coatings Produced from Polycarbamate and Dialdehyde Cross-linking. ACS Sustainable Chemistry and Engineering, 2019, 7, 19621-19630.	6.7	20
16	New AB type monomers from lignocellulosic biomass. Pure and Applied Chemistry, 2019, 91, 389-396.	1.9	8
17	Non-Biaryl Atropisomers: Anilides, Amides, Lactams, and Analogues with C–C and C–X Stereogenic Axes. , 2019, , 489-540.		0
18	Valorization of 2,5-furandicarboxylic acid. Diels–Alder reactions with benzyne. Green Chemistry, 2018, 20, 1448-1454.	9.0	39

#	Article	IF	CITATIONS
19	Polymers from Bioderived Resources: Synthesis of Poly(silylether)s from Furan Derivatives Catalyzed by a Salen–Mn(V) Complex. ACS Sustainable Chemistry and Engineering, 2018, 6, 2491-2497.	6.7	45
20	Size exclusion chromatography of lignin: The mechanistic aspects and elimination of undesired secondary interactions. Journal of Chromatography A, 2018, 1534, 101-110.	3.7	32
21	Catalyst-free lignin valorization by acetoacetylation. Structural elucidation by comparison with model compounds. Green Chemistry, 2018, 20, 2959-2966.	9.0	19
22	Dynamic kinetic resolution of biaryl atropisomers by chiral dialkylaminopyridine catalysts. Organic and Biomolecular Chemistry, 2018, 16, 3121-3126.	2.8	18
23	Directed <i>ortho</i> â€Metalation of <i>O</i> â€Aryl <i>N</i> , <i>N</i> â€Dialkylcarbamates: Methodology, Anionic <i>ortho</i> â€Fries Rearrangement, and Lateral Metalation. European Journal of Organic Chemistry, 2018, 2018, 440-446.	2.4	24
24	Directed <i>ortho</i> â€Metalation of Aryl Amides, <i>Oâ€</i> Carbamates, and Methoxymethoxy Systems: Directed Metalation Group Competition and Cooperation. European Journal of Organic Chemistry, 2018, 2018, 447-454.	2.4	19
25	Biobased poly(vinyl ether)s derived from soybean oil, linseed oil, and camelina oil: Synthesis, characterization, and properties of crosslinked networks and surface coatings. Progress in Organic Coatings, 2018, 125, 453-462.	3.9	29
26	Renewable Reactive Diluents as Practical Styrene Replacements in Biobased Vinyl Ester Thermosets. ACS Sustainable Chemistry and Engineering, 2018, 6, 12586-12592.	6.7	27
27	Dibenzofuran-4,6-bis(oxazoline) (DBFOX). A novel <i>trans</i> -chelating bis(oxazoline) ligand for asymmetric reactions. Organic and Biomolecular Chemistry, 2018, 16, 5551-5565.	2.8	16
28	Enantioselective and Diastereoselective Conjugate Radical Additions to α-Arylidene Ketones and Lactones. Synlett, 2017, 28, 2971-2975.	1.8	3
29	Origin of stretched-exponential photoluminescence relaxation in size-separated silicon nanocrystals. AIP Advances, 2017, 7, 055314.	1.3	24
30	Organophotocatalysis: Insights into the Mechanistic Aspects of Thioureaâ€Mediated Intermolecular [2+2]â€Photocycloadditions. Angewandte Chemie - International Edition, 2016, 55, 5446-5451.	13.8	26
31	Synthesis of silicon quantum dots using cyclohexasilane (Si ₆ H ₁₂). Journal of Materials Chemistry C, 2016, 4, 8206-8213.	5.5	26
32	Synthesis and Characterization of Polyurethane Networks Derived from Soybean-Oil-Based Cyclic Carbonates and Bioderivable Diamines. ACS Sustainable Chemistry and Engineering, 2016, 4, 6551-6561.	6.7	89
33	Structural and Solubility Parameter Correlations of Gelation Abilities for Dihydroxylated Derivatives of Longâ€Chain, Naturally Occurring Fatty Acids. Chemistry - A European Journal, 2015, 21, 8530-8543.	3.3	19
34	Lewis acid mediated diastereoselective intermolecular radical addition/trapping with pyrazolidinone acrylimides. Tetrahedron Letters, 2015, 56, 3571-3574.	1.4	3
35	Novel alkyd-type coating resins produced using cationic polymerization. Journal of Coatings Technology Research, 2015, 12, 633-646.	2.5	14
36	Characterization of BrÃ,nsted Acid–Base Complexes by ¹⁹ F DOSY. Organic Letters, 2015, 17, 1429-1432.	4.6	15

#	Article	IF	CITATIONS
37	Nonbiaryl and Heterobiaryl Atropisomers: Molecular Templates with Promise for Atropselective Chemical Transformations. Chemical Reviews, 2015, 115, 11239-11300.	47.7	517
38	Catalytic Kinetic Resolution of Biaryl Compounds. Chemistry - A European Journal, 2015, 21, 11644-11657.	3.3	166
39	Linear polyester synthesized from furfural-based monomer by photoreaction in sunlight. Green Chemistry, 2015, 17, 4720-4724.	9.0	40
40	Programmed Photodegradation of Polymeric/Oligomeric Materials Derived from Renewable Bioresources. Angewandte Chemie - International Edition, 2015, 54, 1159-1163.	13.8	104
41	Novel biobased poly(vinyl ether)s for coating applications. Inform, 2015, 26, 472-475.	0.1	6
42	Enantioselective allylic amination of MBH carbonates catalyzed by novel chiral 4-dialkylaminopyridine catalysts. Organic Chemistry Frontiers, 2014, 1, 1152-1156.	4.5	15
43	Evaluation of Achiral Templates with Fluxional BrÃ,nsted Basic Substituents in Enantioselective Conjugate Additions. Organic Letters, 2014, 16, 6440-6443.	4.6	14
44	Enantioselective Organoâ€Photocatalysis Mediated by Atropisomeric Thiourea Derivatives. Angewandte Chemie - International Edition, 2014, 53, 5604-5608.	13.8	159
45	Thermoset Coatings from Epoxidized Sucrose Soyate and Blocked, Bioâ€Based Dicarboxylic Acids. ChemSusChem, 2014, 7, 2289-2294.	6.8	57
46	Bio-based poly(vinyl ether)s and their application as alkyd-type surface coatings. Green Chemistry, 2014, 16, 1974.	9.0	27
47	Evaluating Thiourea Architecture for Intramolecular [2+2] Photocycloaddition of 4â€Alkenylcoumarins. Advanced Synthesis and Catalysis, 2014, 356, 2763-2768.	4.3	47
48	Fluxionally Chiral DMAP Catalysts: Kinetic Resolution of Axially Chiral Biaryl Compounds. Angewandte Chemie - International Edition, 2014, 53, 11818-11821.	13.8	109
49	CF Bond Formation: A Freeâ€Radical Approach. Angewandte Chemie - International Edition, 2013, 52, 3570-3572.	13.8	99
50	3-Isoxazolidinone: A New Achiral Template for Enantioselective Transformations. Bulletin of the Korean Chemical Society, 2010, 31, 541-542.	1.9	5
51	Dielsâ~'Alder Cycloaddition Strategy for Kinetic Resolution of Chiral Pyrazolidinones. Organic Letters, 2009, 11, 3894-3897.	4.6	26
52	Nitrile Ylides: Diastereoselective Cycloadditions using Chiral Oxzolidinones Without Lewis Acid. Organic Letters, 2009, 11, 5366-5369.	4.6	32
53	Enantioselective Enolate Protonations: Friedel–Crafts Reactions with αâ€6ubstituted Acrylates. Angewandte Chemie - International Edition, 2008, 47, 9913-9915.	13.8	60
54	Enantioselective Copper-Catalyzed 1,3-Dipolar Cycloadditions. Chemical Reviews, 2008, 108, 2887-2902.	47.7	759

#	Article	IF	CITATIONS
55	Copper(II)-Catalyzed Exo and Enantioselective Cycloadditions of Azomethine Imines. Organic Letters, 2008, 10, 2971-2974.	4.6	116
56	Tin-Free Enantioselective Radical Reactions Using Silanes. Organic Letters, 2008, 10, 5349-5352.	4.6	47
57	Chiral Lewis Acid Catalyzed Enantioselective Conjugate Radical Additions to α,β-Unsaturated 2-Pyridyl Ketones. Synlett, 2008, 2008, 83-88.	1.8	16
58	The Role of Achiral Pyrazolidinone Templates in Enantioselective Dielsâ^'Alder Reactions:Â Scope, Limitations, and Conformational Insights. Journal of the American Chemical Society, 2007, 129, 395-405.	13.7	67
59	Organocatalysis in Conjugate Amine Additions. Synthesis of β-Amino Acid Derivatives. Journal of the American Chemical Society, 2007, 129, 8064-8065.	13.7	168
60	Enantioselective Conjugate Addition of Hydrazines to $\hat{1}\pm,\hat{1}^2$ -Unsaturated Imides. Synthesis of Chiral Pyrazolidinones. Journal of the American Chemical Society, 2007, 129, 4522-4523.	13.7	65
61	Enantioselective 1,3-Dipolar Cycloadditions of Diazoacetates with Electron-Deficient Olefins. Organic Letters, 2007, 9, 1553-1556.	4.6	110
62	Enantioselective Radical Reactions: Stereoselective Aldol Synthesis from Cyclic Ketones. Angewandte Chemie - International Edition, 2007, 46, 9231-9234.	13.8	28
63	Organocatalysis in Radical Chemistry. Enantioselective α-Oxyamination of Aldehydes. Journal of the American Chemical Society, 2007, 129, 4124-4125.	13.7	272
64	Pyrones to Pyrans:Â Enantioselective Radical Additions to Acyloxy Pyrones. Journal of the American Chemical Society, 2006, 128, 13346-13347.	13.7	38
65	Enantioselective Conjugate Radical Addition to αâ€~-Hydroxy Enones. Organic Letters, 2006, 8, 4311-4313.	4.6	28
66	Fluxional Additives:Â A Second Generation Control in Enantioselective Catalysis. Journal of the American Chemical Society, 2006, 128, 13660-13661.	13.7	43
67	Enantioselective radical reactions. Evaluation of nitrogen protecting groups in the synthesis of β2-amino acids. Tetrahedron: Asymmetry, 2006, 17, 516-519.	1.8	18
68	Radical Reactions. , 2006, , 287-313.		0
69	Enantioselective Radical Reactions: Formation of Chiral Quaternary Centers. Synlett, 2006, 2006, 0689-0692.	1.8	12
70	Preparation of Enantiopure \hat{I}^2 -Amino Acids via Enantioselective Conjugate Addition. , 2005, , 377-395.		1
71	Enantioselective Radical Methods for Lactone Synthesis: Use of Unprotected Haloalcohols as Radical Precursors. Synthesis, 2005, 2005, 1528-1532.	2.3	11
72	Enantioselective Radical Addition/Trapping Reactions with α,β-Disubstituted Unsaturated Imides. Synthesis ofanti-Propionate Aldols. Journal of the American Chemical Society, 2005, 127, 2390-2391.	13.7	79

#	Article	IF	CITATIONS
73	Enantioselective Cycloadditions with $\hat{1}\pm,\hat{1}^2$ -Disubstituted Acrylimides. Organic Letters, 2005, 7, 2349-2352.	4.6	64
74	Enantioselective H-Atom Transfer Reaction:  A Strategy to Synthesize Formaldehyde Aldol Products. Organic Letters, 2005, 7, 1453-1456.	4.6	34
75	An Entry to a Chiral Dihydropyrazole Scaffold:Â Enantioselective [3 + 2] Cycloaddition of Nitrile Imines. Journal of the American Chemical Society, 2005, 127, 8276-8277.	13.7	134
76	Enantioselective Addition of Nitrones to Activated Cyclopropanes. Journal of the American Chemical Society, 2005, 127, 5764-5765.	13.7	255
77	Enantioselective Rhodium Enolate Protonations. A New Methodology for the Synthesis of β2-Amino Acids. Organic Letters, 2005, 7, 2571-2573.	4.6	90
78	Chiral Relay in Enantioselective Conjugate Radical Additions Using ÂPyrazolidinone Templates. How Does Metal Geometry Impact Selectivity?. Synlett, 2004, 2004, 2421-2424.	1.8	32
79	Enantioselective diethylzinc additions to aldehydes catalyzed by chiral relay ligands. Tetrahedron: Asymmetry, 2004, 15, 3353-3356.	1.8	32
80	Enantioselective H-Atom Transfer Reactions: A New Methodology for the Synthesis ofβ2-Amino Acids. Angewandte Chemie - International Edition, 2004, 43, 1235-1238.	13.8	82
81	Exo Selective Enantioselective Nitrone Cycloadditions. Journal of the American Chemical Society, 2004, 126, 718-719.	13.7	101
82	Application of Enantioselective Radical Reactions:  Synthesis of (+)-Ricciocarpins A and B. Organic Letters, 2004, 6, 1749-1752.	4.6	40
83	Chiral Lewis Acid Catalysis in Nitrile Oxide Cycloadditions. Journal of the American Chemical Society, 2004, 126, 5366-5367.	13.7	134
84	Radical Reactions in Combinatorial Chemistry. , 2004, , 225-246.		0
85	Enantioselective radical allylation reactions using chiral lanthanide Lewis acids. Tetrahedron, 2003, 59, 10575-10580.	1.9	13
86	Chiral Relay: A Novel Strategy for the Control and Amplification of Enantioselectivity in Chiral Lewis Acid Promoted Reactions. Chemistry - A European Journal, 2003, 9, 28-35.	3.3	54
87	Enantioselective Conjugate Radical Addition toβ-Acyloxy Acrylate Acceptors: An Approach to Acetate Aldol-Type Products. Angewandte Chemie - International Edition, 2003, 42, 4521-4523.	13.8	47
88	Enantioselective Synthesis of α,β-Disubstituted-β-amino Acids. Journal of the American Chemical Society, 2003, 125, 11796-11797.	13.7	122
89	A New Class of Modular Chiral Ligands with Fluxional Groups. Journal of the American Chemical Society, 2003, 125, 9306-9307.	13.7	42
90	Tandem Radical Reactions and Ring-Closing Metathesis. Application in the Synthesis of Cyclooctenes. Organic Letters, 2003, 5, 2883-2886.	4.6	26

#	Article	IF	CITATIONS
91	Enantioselective Radical Processes. Chemical Reviews, 2003, 103, 3263-3296.	47.7	420
92	An Efficient Method for Synthesis of Succinate-Based MMP Inhibitors. Organic Letters, 2002, 4, 3347-3349.	4.6	30
93	Acyclic Diastereoselection in Prochiral Radical Addition to Prochiral Olefins. Journal of the American Chemical Society, 2002, 124, 2924-2930.	13.7	24
94	The Role of the Achiral Template in Enantioselective Transformations. Radical Conjugate Additions to α-Methacrylates Followed by Hydrogen Atom Transfer. Journal of the American Chemical Society, 2002, 124, 984-991.	13.7	96
95	A Convenient Method for the Conversion of N-Acyloxazolidinones to Hydroxamic Acids. Organic Letters, 2002, 4, 3343-3346.	4.6	55
96	Lanthanide Lewis Acid-Mediated Enantioselective Conjugate Radical Additions. Organic Letters, 2002, 4, 2929-2932.	4.6	45
97	Enantioselective Conjugate Addition of Silylketene Acetals to β-Enamidomalonates. Synthesis of β-Amino Acid Derivatives. Organic Letters, 2002, 4, 2933-2936.	4.6	41
98	Free-Radical-Mediated Conjugate Additions. Enantioselective Synthesis of Butyrolactone Natural Products:Â (â^')-Enterolactone, (â^')-Arctigenin, (â^')-Isoarctigenin, (â^')-Nephrosteranic Acid, and (â^')-Roccellaric Acid. Journal of Organic Chemistry, 2002, 67, 1738-1745.	3.2	94
99	Crotylations of α-Carbonyl Radicals with Crotylstannane. Organic Letters, 2002, 4, 3435-3438.	4.6	13
100	Enantioselective Conjugate Addition of Hydroxylamines to Pyrazolidinone Acrylamides. Organic Letters, 2001, 3, 4181-4184.	4.6	73
101	Radical-Mediated Annulation Reactions. A Versatile Strategy for the Preparation of a Series of Carbocycles. Organic Letters, 2001, 3, 3679-3681.	4.6	13
102	A New Approach to Enantiocontrol and Enantioselectivity Amplification:Â Chiral Relay in Dielsâ^'Alder Reactions. Journal of the American Chemical Society, 2001, 123, 8444-8445.	13.7	90
103	Enantioselective Tandem Radical Reactions:Â Vicinal Difunctionalization in Acyclic Systems with Control over Relative and Absolute Stereochemistry. Journal of the American Chemical Society, 2001, 123, 9472-9473.	13.7	117
104	Enantioselective Conjugate Additions. Tetrahedron, 2000, 56, 8033-8061.	1.9	798
105	A new methodology for the synthesis of β-amino acids. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 1461-1466.	1.3	44
106	N-Benzylhydroxylamine Addition to β-Aryl Enoates. Enantioselective Synthesis of β-Aryl-β-amino Acid Precursors. Organic Letters, 2000, 2, 3393-3396.	4.6	65
107	Higher Selectivity at Higher Temperatures! Effect of Precursor Stereochemistry on Diastereoselectivity in Radical Allylations. Insight into the Role of the Lewis Acid. Journal of the American Chemical Society, 2000, 122, 8873-8879.	13.7	37
108	Enantioselective Free Radical Reactions. Accounts of Chemical Research, 1999, 32, 163-171.	15.6	284

4

#	Article	IF	CITATIONS
109	Enantiospecific Synthesis of (â^)-Slaframine and Related Hydroxylated Indolizidines. Utilization of a Nucleophilic Alaninol Synthon Derived from Serine1. Journal of Organic Chemistry, 1999, 64, 6434-6442.	3.2	39
110	Chiral Lewis Acid Catalysis in Conjugate Additions ofO-Benzylhydroxylamine to Unsaturated Amides. Enantioselective Synthesis of β-Amino Acid Precursors. Journal of the American Chemical Society, 1998, 120, 6615-6616.	13.7	196
111	A New Route to 3-Amino Sugars. A Concise Synthesis ofl-Daunosamine andd-Ristosamine Derivatives. Journal of Organic Chemistry, 1997, 62, 5864-5872.	3.2	54
112	Practical and Efficient Enantioselective Conjugate Radical Additions. Journal of Organic Chemistry, 1997, 62, 3800-3801.	3.2	143
113	Acyclic Stereocontrol in Radical Reactions. Diastereoselective Radical Addition/Allylation of N-Propenoyloxazolidinone. Journal of Organic Chemistry, 1996, 61, 6090-6091.	3.2	75
114	Chiral Lewis Acid Catalysis in Radical Reactions:Â Enantioselective Conjugate Radical Additions. Journal of the American Chemical Society, 1996, 118, 9200-9201.	13.7	210
115	Participation of Organotin Lewis Acids in Radical Reactions:  Manipulation of Rotamer Population in N-Enoyloxazolidinones. Journal of the American Chemical Society, 1996, 118, 3063-3064.	13.7	67
116	Enantiospecific Synthesis of Trisubstituted Butyrolactone Natural Products and Their Analogs. Journal of Organic Chemistry, 1996, 61, 7848-7855.	3.2	36
117	Acyclische Kontrolle der Produktkonfiguration in Radikalreaktionen: Ïfâ€Selektivitäbei der Verwendung von Oxazolidinonâ€Auxiliaren. Angewandte Chemie, 1996, 108, 198-200.	2.0	19
118	Acyclic Stereocontrol in Radical Reactions:ï•Selectivity with Oxazolidinone Auxiliories. Angewandte Chemie International Edition in English, 1996, 35, 190-192.	4.4	104
119	A Convenient Synthesis of N-Methoxy-N-Methylamides from Carboxylic Acids. Synthetic Communications, 1995, 25, 1255-1264.	2.1	40
120	CHEMISTRY OF N-METHOXY-N-METHYLAMIDES. APPLICATIONS IN SYNTHESIS. A REVIEW. Organic Preparations and Procedures International, 1993, 25, 15-40.	1.3	183
121	A Convenient Synthesis of 3-Alkyltetronic Acids from 3-Acyltetronic Acids. Synthetic Communications, 1992, 22, 809-816.	2.1	5
122	Nitrogen-15 NMR spectroscopy: Nitrogen-15 chemical shifts of 1,2-diaminobenzenes and 1,8-diaminonaphthalenes. Magnetic Resonance in Chemistry, 1991, 29, 400-400.	1.9	6
123	Nitrogen-15 NMR spectroscopy: Nitrogen-15 chemical shifts of alkylthioureas. Magnetic Resonance in Chemistry, 1991, 29, 401-401.	1.9	5
124	Combinational O-aryl carbamate and benzamide directed ortho metalation reactions. Synthesis of ochratoxin A and ochratoxin B. Journal of the American Chemical Society, 1985, 107, 6312-6315.	13.7	45
125	The directed ortho lithiation of O-aryl carbamates. An anionic equivalent of the Fries rearrangement. Journal of Organic Chemistry, 1983, 48, 1935-1937.	3.2	197

126 Free Radical Telomers and Polymers: Stereochemical Control. , 0, , 489-516.

#	Article	IF	CITATIONS
127	Enantioselective Radical Reactions. , 0, , 107-162.		75