William L Roberts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8138221/publications.pdf Version: 2024-02-01

MILLIAM L POREDTS

#	Article	IF	CITATIONS
1	Stability and characteristics of NH3/CH4/air flames in a combustor fired by a double swirl stabilized burner. Proceedings of the Combustion Institute, 2023, 39, 4205-4213.	2.4	10
2	Ignition delay time and laminar flame speed measurements of ammonia blended with dimethyl ether: A promising low carbon fuel blend. Renewable Energy, 2022, 181, 1353-1370.	4.3	92
3	Detailed investigation of the mixing field and stability of natural gas and propane in highly turbulent planar flames. Fuel, 2022, 309, 122222.	3.4	6
4	Applying heat flux method to laminar burning velocity measurements of NH3/CH4/air at elevated pressures and kinetic modeling study. Combustion and Flame, 2022, 236, 111788.	2.8	50
5	Investigation on the formic acid evaporation and ignition of formic acid/octanol blend at elevated temperature and pressure. Fuel, 2022, 313, 122636.	3.4	3
6	The effect of preheating temperature on PAH/soot formation in methane/air co-flow flames at elevated pressure. Fuel, 2022, 313, 122656.	3.4	8
7	Study of the Effect of Research Octane Number on the Auto-Ignition of Lubricant Oil Surrogates (<i>n</i> -Hexadecane). ACS Omega, 2022, 7, 2766-2773.	1.6	3
8	A computational study of thermally induced secondary atomization in multicomponent droplets. Journal of Fluid Mechanics, 2022, 935, .	1.4	5
9	A detailed chemical insights into the kinetics of diethyl ether enhancing ammonia combustion and the importance of NOx recycling mechanism. Fuel Communications, 2022, 10, 100051.	2.0	46
10	Review on the recent advances on ammonia combustion from the fundamentals to the applications. Fuel Communications, 2022, 10, 100053.	2.0	133
11	Active Valve Resonant Pulse Combustor for Pressure Gain Combustion Applications. Journal of Propulsion and Power, 2022, 38, 171-180.	1.3	2
12	The effects of injector size on the dynamics and instabilities of lean premixed swirling flame. Aerospace Science and Technology, 2022, 123, 107463.	2.5	5
13	Numerical study of heat release rate markers in laminar premixed Ammonia-methane-air flames. Fuel, 2022, 318, 123599.	3.4	18
14	Molecular characteristics of sulfur compounds in oxidative desulfurization for heavy fuel oil based on APPI FT-ICR MS analysis. Catalysis Today, 2022, 404, 262-268.	2.2	4
15	Low temperature oxidation of toluene in an n-heptane/toluene mixture. Combustion and Flame, 2022, 242, 112200.	2.8	3
16	Incipient sooting tendency of oxygenated fuels doped in ethylene counterflow diffusion flames. Combustion and Flame, 2022, 244, 112284.	2.8	2
17	Numerical model of an ultrasonically induced cavitation reactor and application to heavy oil processing. Chemical Engineering Journal Advances, 2022, 12, 100362.	2.4	2
18	Single-shot imaging of major species and OH mole fractions and temperature in non-premixed H2/N2 flames at elevated pressure. Proceedings of the Combustion Institute, 2021, 38, 1647-1655.	2.4	23

#	Article	IF	CITATIONS
19	Structure and stability characteristics of turbulent planar flames with inhomogeneous jet in a concentric flow slot burner. Proceedings of the Combustion Institute, 2021, 38, 2597-2606.	2.4	9
20	NO and OH* emission characteristics of very-lean to stoichiometric ammonia–hydrogen–air swirl flames. Proceedings of the Combustion Institute, 2021, 38, 5155-5162.	2.4	70
21	Study of spray structure from non-flash to flash boiling conditions with space-time tomography. Proceedings of the Combustion Institute, 2021, 38, 3223-3231.	2.4	12
22	Numerical and chemical kinetic analysis to evaluate the effect of steam dilution and pressure on combustion of n-dodecane in a swirling flow environment. Fuel, 2021, 288, 119710.	3.4	23
23	Experimental and theoretical evidence for the temperature-determined evolution of PAH functional groups. Proceedings of the Combustion Institute, 2021, 38, 1467-1475.	2.4	9
24	On the bi-stable nature of turbulent premixed bluff-body stabilized flames at elevated pressure and near lean blow-off. Proceedings of the Combustion Institute, 2021, 38, 2853-2860.	2.4	5
25	Analysis of Thermally Induced Breakup of Ultrasonically Emulsified Heavy Fuel Oil using Dynamic Mode Decomposition. International Journal of Heat and Mass Transfer, 2021, 166, 120815.	2.5	7
26	Combustion behavior of ammonia blended with diethyl ether. Proceedings of the Combustion Institute, 2021, 38, 499-506.	2.4	88
27	A method to convert stand-alone OH fluorescence images into OH mole fraction. Proceedings of the Combustion Institute, 2021, 38, 1771-1778.	2.4	2
28	Characterization of Turbulence in an Optically Accessible Fan-Stirred Spherical Combustion Chamber. Combustion Science and Technology, 2021, 193, 1231-1257.	1.2	7
29	A Numerical Study on Soot Formation and Evolution in Pressurized Turbulent Sooting Flames. , 2021, , .		Ο
30	Effect of CO ₂ Dilution on Methane/Air Flames at Elevated Pressures: An Experimental and Modeling Study. Energy & Fuels, 2021, 35, 2639-2653.	2.5	17
31	LES Study of Active Valve Resonant Pulse Combustor. , 2021, , .		Ο
32	Stability limits and NO emissions of premixed swirl ammonia-air flames enriched with hydrogen or methane at elevated pressures. International Journal of Hydrogen Energy, 2021, 46, 11969-11981.	3.8	91
33	Heavy Fuel Oil Combustion Characteristics Evaluation in Various Swirling Flow Conditions. Journal of Engineering for Gas Turbines and Power, 2021, 143, .	0.5	2
34	Soot formation in turbulent flames of ethylene/hydrogen/ammonia. Combustion and Flame, 2021, 226, 315-324.	2.8	33
35	Chemical Kinetics of Asphaltene Pyrolysis. Energy & Fuels, 2021, 35, 8672-8684.	2.5	6
36	Effects of pressure on soot production in piloted turbulent non-premixed jet flames. Combustion and Flame, 2021, 227, 271-282.	2.8	7

#	Article	IF	CITATIONS
37	Decomposition of swirling flame transfer function in the complex space. Combustion and Flame, 2021, 228, 29-41.	2.8	7
38	Surrogate formulation and molecular characterization of sulfur species in vacuum residues using APPI and ESI FT-ICR mass spectrometry. Fuel, 2021, 293, 120471.	3.4	14
39	Cenosphere formation of heavy fuel oil/water emulsion combustion in a swirling flame. Fuel Processing Technology, 2021, 216, 106800.	3.7	17
40	Rapid soot inception via α-alkynyl substitution of polycyclic aromatic hydrocarbons. Fuel, 2021, 295, 120580.	3.4	29
41	Growth network of PAH with 5-membered ring: Case study with acenaphthylene molecule. Combustion and Flame, 2021, 230, 111449.	2.8	13
42	Flame flow field interaction in non-premixed CH4/H2 swirling flames. International Journal of Hydrogen Energy, 2021, 46, 30494-30509.	3.8	7
43	A Comprehensive Experimental and Kinetic Study of Laminar Flame Characteristics of H ₂ and CO Addition to Oxygenated Gasoline. Energy & Fuels, 2021, 35, 14063-14076.	2.5	2
44	Chemical Kinetic Modeling of the Autoignition Properties of Ammonia at Low–Intermediate Temperature and High Pressure using a Newly Proposed Reaction Mechanism. Energy & Fuels, 2021, 35, 13506-13522.	2.5	16
45	Chemiluminescence signature of premixed ammonia-methane-air flames. Combustion and Flame, 2021, 231, 111508.	2.8	43
46	Furan formation pathways exploration in low temperature oxidation of 1,3-butadiene, trans-2-butene, and cis-2-butene. Combustion and Flame, 2021, 232, 111519.	2.8	9
47	The effect of oxygen content on the turbulent flame speed of ammonia/oxygen/nitrogen expanding flames under elevated pressures. Combustion and Flame, 2021, 232, 111521.	2.8	41
48	Chemical effects of anisole and toluene addition to n‑heptane on PAH characteristics in laminar premixed flames by LIF measurement and kinetic model. Fuel, 2021, 303, 121255.	3.4	7
49	Ultrasound-assisted oxidative desulfurization of Arabian extra light oil (AXL) with molecular characterization of the sulfur compounds. Fuel, 2021, 305, 121612.	3.4	17
50	Time-resolved thermometric investigation of flame quenching between parallel flat plates. Fuel, 2021, 305, 121511.	3.4	6
51	Study of spray structure under flash boiling conditions using 2phase-SLIPI. Experiments in Fluids, 2021, 62, 1.	1.1	6
52	Actuation efficiency of nanosecond repetitively pulsed discharges for plasma-assisted swirl flames at pressures up to 3 bar. Journal Physics D: Applied Physics, 2021, 54, 075208.	1.3	17
53	Swirling Flame Combustion of Heavy Fuel Oil: Effect of Fuel Sulfur Content. Journal of Energy Resources Technology, Transactions of the ASME, 2021, 143, .	1.4	13
54	Effects of CO ₂ Dilution and CH ₄ Addition on Laminar Burning Velocities of Syngas at Elevated Pressures: An Experimental and Modeling Study. Energy & Fuels, 2021, 35, 18733-18745.	2.5	5

#	Article	IF	CITATIONS
55	Exploring the combustion chemistry of anisole in laminar counterflow diffusion-flames under oxy-fuel conditions. Combustion and Flame, 2021, , 111929.	2.8	6
56	Study of spray collapse phenomenon at flash boiling conditions using simultaneous front and side view imaging. International Journal of Heat and Mass Transfer, 2020, 147, 118824.	2.5	23
57	Soot characteristics of high-reactivity gasoline under compression-ignition conditions using a gasoline direct injection (GDI) piezoelectric fuel injector. Fuel, 2020, 265, 116931.	3.4	12
58	Auto-ignition characteristics of high-reactivity gasoline fuel using a gasoline multi-hole injector. Experimental Thermal and Fluid Science, 2020, 112, 109993.	1.5	5
59	Auto-Ignition of a Hexadecane Droplet Mixed with Different Octane Number Fuels at Elevated Pressures To Investigate the Pre-Ignition Behavior. Energy & Fuels, 2020, 34, 806-816.	2.5	7
60	Fuel and Equivalence Ratio Effects on Transfer Functions of Premixed Swirl Flames. Journal of Propulsion and Power, 2020, 36, 271-284.	1.3	7
61	Experimental study and kinetic analysis of the laminar burning velocity of NH3/syngas/air, NH3/CO/air and NH3/H2/air premixed flames at elevated pressures. Combustion and Flame, 2020, 221, 270-287.	2.8	141
62	Experimental and Kinetic Modeling Study of Laminar Flame Speed of Dimethoxymethane and Ammonia Blends. Energy & Fuels, 2020, 34, 14726-14740.	2.5	64
63	Assessment of the stabilization mechanisms of turbulent lifted jet flames at elevated pressure using combined 2-D diagnostics. Combustion and Flame, 2020, 214, 323-335.	2.8	17
64	Stability limits and NO emissions of technically-premixed ammonia-hydrogen-nitrogen-air swirl flames. International Journal of Hydrogen Energy, 2020, 45, 22008-22018.	3.8	94
65	Morphology of soot sampled from N2-diluted methane/air counterflow flames at elevated pressures via TEM imaging. Combustion and Flame, 2020, 216, 92-99.	2.8	7
66	Soot formation in laminar flames of ethylene/ammonia. Combustion and Flame, 2020, 220, 210-218.	2.8	63
67	Height of turbulent non-premixed jet flames at elevated pressure. Combustion and Flame, 2020, 220, 407-409.	2.8	7
68	TomoFluid: Reconstructing Dynamic Fluid From Sparse View Videos. , 2020, , .		14
69	Stability Characteristics of an Actively-valved Pulse Combustor. , 2020, , .		Ο
70	Gas-to-Liquid Phase Transition of PAH at Flame Temperatures. Journal of Physical Chemistry A, 2020, 124, 3896-3903.	1.1	10
71	A Preliminary Investigation of the Secondary Flame and Operational Properties of an Actively-valved Pulse Jet. , 2020, , .		2
72	A new OH fluorescence signal-to-OH mole fraction conversion model formulation and calibration. , 2020, , .		0

#	Article	IF	CITATIONS
73	Laminar Burning Velocities and Kinetic Modeling of a Renewable E-Fuel: Formic Acid and Its Mixtures with H ₂ and CO ₂ . Energy & Fuels, 2020, 34, 7564-7572.	2.5	23
74	Quenching distance of laminar methane-air flames at cryogenic temperatures and implications for flame arrester design. Applications in Energy and Combustion Science, 2020, 1-4, 100001.	0.9	1
75	A comprehensive study of spray and combustion characteristics of a prototype injector for gasoline compression ignition (GCI) application. Fuel, 2020, 277, 118144.	3.4	7
76	Role of dimethyl ether in incipient soot formation in premixed ethylene flames. Combustion and Flame, 2020, 216, 271-279.	2.8	24
77	Effects of soot volume fraction on local gas heating and particle sizing using laser induced incandescence. Journal of Aerosol Science, 2020, 149, 105598.	1.8	5
78	Characteristics of a non-reacting spray from an outwardly opening hollow-cone injector with high-reactivity gasolines. Fuel, 2020, 268, 117293.	3.4	3
79	Stability limits and exhaust NO performances of ammonia-methane-air swirl flames. Experimental Thermal and Fluid Science, 2020, 114, 110058.	1.5	71
80	Investigating Soot Parameters in an Ethane/Air Counterflow Diffusion Flame at Elevated Pressures. Combustion Science and Technology, 2020, , 1-16.	1.2	7
81	A comprehensive kinetic model for dimethyl ether and dimethoxymethane oxidation and NO interaction utilizing experimental laminar flame speed measurements at elevated pressure and temperature. Combustion and Flame, 2020, 218, 57-74.	2.8	66
82	INFLUENCE OF FLASH BOILING ON SPRAY MORPHOLOGY USING A PROTOTYPE INJECTOR FOR GASOLINE COMPRESSION IGNITION (GCI) APPLICATION. Atomization and Sprays, 2020, 30, 351-369.	0.3	0
83	Feasibility of Innovative Solar-Thermo-Acoustic Power Conversion Cycles. , 2020, , .		0
84	Volume of Fluid Based Model of Heavy Fuel Oil Droplet Evaporation and Combustion. , 2020, , .		0
85	Design Optimization of a Multi-kW Thermoacoustic Electric Generator Using DeltaEC Model. , 2020, , .		0
86	The growth of PAHs and soot in the post-flame region. Proceedings of the Combustion Institute, 2019, 37, 977-984.	2.4	40
87	Small ester combustion chemistry: Computational kinetics and experimental study of methyl acetate and ethyl acetate. Proceedings of the Combustion Institute, 2019, 37, 419-428.	2.4	45
88	Macroscopic non-reacting spray characterization of gasoline compression ignition fuels in a constant volume chamber. Fuel, 2019, 255, 115818.	3.4	7
89	Evolution of oxygenated polycyclic aromatic hydrocarbon chemistry at flame temperatures. Combustion and Flame, 2019, 209, 441-451.	2.8	30
90	Theoretical Study of PAH Growth by Phenylacetylene Addition. Journal of Physical Chemistry A, 2019, 123, 10323-10332.	1.1	8

#	Article	IF	CITATIONS
91	Experimental and analytical study on liquid and vapor penetration of high-reactivity gasoline using a high-pressure gasoline multi-hole injector. Applied Thermal Engineering, 2019, 163, 114187.	3.0	11
92	Optimization of Specimen Preparation Methods for Cryo Electron Microscopy of Oil-and-Water Emulsions. Microscopy and Microanalysis, 2019, 25, 2428-2429.	0.2	4
93	Improving the Performance of an Active Valve Resonant Pulse Combustor. , 2019, , .		4
94	Experimental study on the non-reacting spray characterization of gasoline compression ignition fuel. Energy Procedia, 2019, 158, 1968-1973.	1.8	6
95	Effect of propagation speed on the quenching of methane, propane and ethylene premixed flames between parallel flat plates. Fuel, 2019, 256, 115870.	3.4	22
96	Detachment mechanisms of turbulent non-premixed jet flames at atmospheric and elevated pressures. Combustion and Flame, 2019, 202, 219-227.	2.8	13
97	Characterization of deasphalted heavy fuel oil using APPI (+) FT-ICR mass spectrometry and NMR spectroscopy. Fuel, 2019, 253, 950-963.	3.4	51
98	High-Speed Imaging of Turbulent Nonpremixed Syngas Flames at Elevated Pressures. Flow, Turbulence and Combustion, 2019, 103, 871-885.	1.4	2
99	Experimental investigation of the near field in sooting turbulent nonpremixed flames at elevated pressures. Experimental Thermal and Fluid Science, 2019, 105, 332-341.	1.5	22
100	Temperature and water measurements in flames using 1064Ânm Laser-Induced Grating Spectroscopy (LIGS). Combustion and Flame, 2019, 205, 336-344.	2.8	18
101	An experimental apparatus to measure soot morphology at high pressures using multi-angle light scattering. Measurement Science and Technology, 2019, 30, 075902.	1.4	9
102	Computational study of polycyclic aromatic hydrocarbons growth by vinylacetylene addition. Combustion and Flame, 2019, 202, 276-291.	2.8	42
103	An experimental study of turbulent lifted flames at elevated pressures. Combustion and Flame, 2019, 203, 301-312.	2.8	14
104	Auto-ignition of direct injection spray of light naphtha, primary reference fuels, gasoline and gasoline surrogate. Energy, 2019, 170, 375-390.	4.5	20
105	Structure of turbulent nonpremixed syngas flames at high pressure. Proceedings of the Combustion Institute, 2019, 37, 2207-2214.	2.4	19
106	Determining fractal properties of soot aggregates and primary particle size distribution in counterflow flames up to 10â€atm. Proceedings of the Combustion Institute, 2019, 37, 1161-1168.	2.4	25
107	Cenosphere Formation during Single-Droplet Combustion of Heavy Fuel Oil. Energy & Fuels, 2019, 33, 1570-1581.	2.5	20
108	In Situ Imaging Studies of Combustor Pressure Effects on Soot Oxidation. Energy & Fuels, 2019, 33, 1582-1589.	2.5	9

#	Article	IF	CITATIONS
109	The site effect on PAHs formation in HACA-based mass growth process. Combustion and Flame, 2019, 199, 54-68.	2.8	67
110	Tracer-free laser-induced grating spectroscopy using a pulse burst laser at 100 kHz. Optics Express, 2019, 27, 31217.	1.7	6
111	Development of a High-Pressure Hot-Corrosion Burner Rig for Testing Structural Materials Following Long Exposures to Arabian Extra Light Crude Oil Combustion Products. , 2019, , .		Ο
112	Impact of thermodynamic properties and heat loss on ignition of transportation fuels in rapid compression machines. Fuel, 2018, 218, 203-212.	3.4	3
113	Effect of pressure on the transfer functions of premixed methane and propane swirl flames. Combustion and Flame, 2018, 193, 272-282.	2.8	39
114	GDI fuel sprays of light naphtha, PRF95 and gasoline using a piezoelectric injector under different ambient pressures. Fuel, 2018, 223, 294-311.	3.4	22
115	Influence of Asphaltene Concentration on the Combustion of a Heavy Fuel Oil Droplet. Energy & Fuels, 2018, 32, 12981-12991.	2.5	29
116	Effect of dimethyl ether (DME) addition on sooting limits in counterflow diffusion flames of ethylene at elevated pressures. Combustion and Flame, 2018, 197, 463-470.	2.8	34
117	Hydraulic characterization of high-pressure gasoline multi-hole injector. Flow Measurement and Instrumentation, 2018, 64, 133-141.	1.0	19
118	Measurements of Pressure Effects on PAH Distribution and 2D Soot Volume Fraction Diagnostics in a Laminar Non-premixed Coflow Flame. Energy & Fuels, 2018, 32, 10974-10983.	2.5	20
119	PLIF measurements of non-thermal NO concentrations in alcohol and alkane premixed flames. Combustion and Flame, 2018, 194, 363-375.	2.8	22
120	Numerical Simulations of High Reactivity GasolineÂFuel Sprays under Vaporizing andÂReactive Conditions. , 2018, , .		4
121	Self-similar scaling of pressurised sooting methane/air coflow flames at constant Reynolds and Grashof numbers. Combustion and Flame, 2018, 196, 300-313.	2.8	5
122	Influence of Fuel Composition on the Operation of a Liquid Fueled Resonant Pulse Combustor. , 2018, ,		5
123	Experimental and Numerical Study on Oxidation Deposition Properties of Aviation Kerosene. Energy & Fuels, 2018, 32, 7444-7450.	2.5	16
124	Soot measurements by two angle scattering and extinction in an N2-diluted ethylene/air counterflow diffusion flame from 2 to 5 atm. Proceedings of the Combustion Institute, 2017, 36, 861-869.	2.4	40
125	Transfer functions of laminar premixed flames subjected to forcing by acoustic waves, AC electric fields, and non-thermal plasma discharges. Proceedings of the Combustion Institute, 2017, 36, 4183-4192.	2.4	46
126	Variations in non-thermal NO formation pathways in alcohol flames. Proceedings of the Combustion Institute, 2017, 36, 3995-4002.	2.4	17

#	Article	IF	CITATIONS
127	Soot, organics, and ultrafine ash from air- and oxy-fired coal combustion. Proceedings of the Combustion Institute, 2017, 36, 4029-4037.	2.4	11
128	Temperature measurements in a wall stabilized steady flame using CARS. , 2017, , .		0
129	Flame Quenching Dynamics of High Velocity Flames in Rectangular Cross-section Channels. , 2017, , .		3
130	Influence of Actively Controlled Heat Release Timing on the Performance and Operational Characteristics of a Rotary Valve, Acoustically Resonant Pulse Combustor. , 2017, , .		1
131	Time-averaged probability density functions of soot nanoparticles along the centerline of a piloted turbulent diffusion flame using a scanning mobility particle sizer. Journal of Aerosol Science, 2017, 106, 56-67.	1.8	25
132	Soot Particle Size Distribution Functions in a Turbulent Non-Premixed Ethylene-Nitrogen Flame. Flow, Turbulence and Combustion, 2017, 98, 1173-1186.	1.4	24
133	Effects of Fuel Quantity on Soot Formation Process for Biomass-Based Renewable Diesel Fuel Combustion. Journal of Engineering for Gas Turbines and Power, 2017, 139, .	0.5	3
134	Investigation of Gas Heating by Nanosecond Repetitively Pulsed Glow Discharges Used for Actuation of a Laminar Methane-Air Flame. Combustion Science and Technology, 2017, 189, 2012-2022.	1.2	14
135	Effects of hydrodynamics and mixing on soot formation and growth in laminar coflow diffusion flames at elevated pressures. Combustion and Flame, 2017, 181, 39-53.	2.8	31
136	Characteristics of spray from a GDI fuel injector for naphtha and surrogate fuels. Fuel, 2017, 190, 113-128.	3.4	30
137	Heavy fuel oil pyrolysis and combustion: Kinetics and evolved gases investigated by TGA-FTIR. Journal of Analytical and Applied Pyrolysis, 2017, 127, 183-195.	2.6	78
138	Influence of Ethanol and Exhaust Gas Recirculation on Laminar Burning Behaviors of Fuels for Advanced Combustion Engines (FACE-C) Gasoline and Its Surrogate. Energy & Fuels, 2017, 31, 14104-14115.	2.5	13
139	Effect of burner geometry on swirl stabilized methane/air flames: A joint LES/OH-PLIF/PIV study. Fuel, 2017, 207, 533-546.	3.4	33
140	Performance and emissions of gasoline blended with terpineol as an octane booster. Renewable Energy, 2017, 101, 1087-1093.	4.3	32
141	Effect of the mixing fields on the stability and structure of turbulent partially premixed flames in a concentric flow conical nozzle burner. Combustion and Flame, 2017, 175, 180-200.	2.8	26
142	Analysis of the step responses of laminar premixed flames to forcing by non-thermal plasma. Proceedings of the Combustion Institute, 2017, 36, 4145-4153.	2.4	20
143	Influence of Pilot Flame Parameters on the Stability of Turbulent Jet Flames. Energy & Fuels, 2017, 31, 2128-2137.	2.5	15
144	Terpineol as a novel octane booster for extending the knock limit of gasoline. Fuel, 2017, 187, 9-15.	3.4	34

#	Article	IF	CITATIONS
145	Pulse Combustor Driven Pressure Gain Combustion for High Efficiency Gas Turbine Engines. , 2017, , 127-152.		11
146	Numerical Modeling of MILD Combustion at High Pressure to Predict the Optimal Operating Conditions. , 2017, , 55-76.		0
147	Spray combustion of biomass-based renewable diesel fuel using multiple injection strategy in a constant volume combustion chamber. Fuel, 2016, 181, 718-728.	3.4	33
148	Laminar Burning Velocities of Fuels for Advanced Combustion Engines (FACE) Gasoline and Gasoline Surrogates with and without Ethanol Blending Associated with Octane Rating . Combustion Science and Technology, 2016, 188, 692-706.	1.2	14
149	Calculation of Average Molecular Parameters, Functional Groups, and a Surrogate Molecule for Heavy Fuel Oils Using ¹ H and ¹³ C Nuclear Magnetic Resonance Spectroscopy. Energy & Fuels, 2016, 30, 3894-3905.	2.5	74
150	Soot particle size measurements in ethylene diffusion flames at elevated pressures. Combustion and Flame, 2016, 169, 85-93.	2.8	59
151	Compositional effects on the ignition of FACE gasolines. Combustion and Flame, 2016, 169, 171-193.	2.8	174
152	Narrow band flame emission from dieseline and diesel spray combustion in a constant volume combustion chamber. Fuel, 2016, 185, 829-846.	3.4	9
153	New Procedure to Develop Lumped Kinetic Models for Heavy Fuel Oil Combustion. Energy & Fuels, 2016, 30, 9814-9818.	2.5	3
154	Computational Fluid Dynamics Simulations and Validation of a Novel Constant Volume Combustion Jet Engine. , 2016, , .		0
155	Design of an Actively Valved and Acoustically Resonant Pulse Combustor for Pressure-gain Combustion Applications. , 2016, , .		14
156	Cenosphere formation from heavy fuel oil: a numerical analysis accounting for the balance between porous shells and internal pressure. Combustion Theory and Modelling, 2016, 20, 154-172.	1.0	10
157	Investigation of the effects of quarl and initial conditions on swirling non-premixed methane flames: Flow field, temperature, and species distributions. Fuel, 2016, 169, 120-134.	3.4	40
158	Experimental study of the inverse diffusion flame using high repetition rate OH/acetone PLIF and PIV. Fuel, 2016, 165, 447-461.	3.4	40
159	Laminar burning velocities at elevated pressures for gasoline and gasoline surrogates associated with RON. Combustion and Flame, 2015, 162, 2311-2321.	2.8	120
160	Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review. Renewable and Sustainable Energy Reviews, 2015, 51, 1166-1190.	8.2	97
161	Synthesis of cracked Calophyllum inophyllum oil using fly ash catalyst for diesel engine application. Fuel, 2015, 155, 68-76.	3.4	34
162	Experiments and simulations of NOx formation in the combustion of hydroxylated fuels. Combustion and Flame, 2015, 162, 2322-2336.	2.8	15

#	Article	IF	CITATIONS
163	Technoeconomic analysis of jet fuel production from hydrolysis, decarboxylation, and reforming of camelina oil. Biomass and Bioenergy, 2015, 75, 23-34.	2.9	63
164	Effects of Ambient Oxygen Concentration on Soot Temperature and Concentration for Biodiesel and Diesel Spray Combustion. Journal of Energy Engineering - ASCE, 2015, 141, .	1.0	5
165	Fuel and engine characterization study of catalytically cracked waste transformer oil. Energy Conversion and Management, 2015, 96, 490-498.	4.4	22
166	A fundamental investigation into the relationship between lubricant composition and fuel ignition quality. Fuel, 2015, 160, 605-613.	3.4	41
167	TG/DTG, FT-ICR Mass Spectrometry, and NMR Spectroscopy Study of Heavy Fuel Oil. Energy & Fuels, 2015, 29, 7825-7835.	2.5	93
168	A computational methodology for formulating gasoline surrogate fuels with accurate physical and chemical kinetic properties. Fuel, 2015, 143, 290-300.	3.4	134
169	Spray combustion of Jet-A and diesel fuels in a constant volume combustion chamber. Energy Conversion and Management, 2015, 89, 525-540.	4.4	42
170	Investigation of the effects of renewable diesel fuels on engine performance, combustion, and emissions. Fuel, 2015, 140, 541-554.	3.4	72
171	Experimental and numerical analysis for high intensity swirl based ultra-low emission flameless combustor operating with liquid fuels. Proceedings of the Combustion Institute, 2015, 35, 3581-3589.	2.4	59
172	Comparison of Soot Formation For Diesel and Jet-A in a Constant Volume Combustion Chamber Using Two-Color Pyrometry. , 2014, , .		11
173	Effects of Diluents on Soot Surface Temperature and Volume Fraction in Diluted Ethylene Diffusion Flames at Pressure. Combustion Science and Technology, 2014, 186, 815-828.	1.2	24
174	Soot measurements for diesel and biodiesel spray combustion under high temperature highly diluted ambient conditions. Fuel, 2014, 135, 340-351.	3.4	37
175	Flame structure of methane inverse diffusion flame. Experimental Thermal and Fluid Science, 2014, 56, 23-32.	1.5	39
176	Soot temperature and KL factor for biodiesel and diesel spray combustion in a constant volume combustion chamber. Applied Energy, 2013, 107, 52-65.	5.1	84
177	Effects of Ambient Temperature and Oxygen Concentration on Diesel Spray Combustion Using a Single-Nozzle Injector in a Constant Volume Combustion Chamber. Combustion Science and Technology, 2013, 185, 1378-1399.	1.2	16
178	Product sampling during transient continuous countercurrent hydrolysis of canola oil and development of a kinetic model. Computers and Chemical Engineering, 2013, 58, 144-155.	2.0	10
179	Effects of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated engine conditions. Energy, 2013, 57, 722-732.	4.5	23
180	Semi-Batch Deoxygenation of Canola- and Lard-Derived Fatty Acids to Diesel-Range Hydrocarbons. Energy & Fuels, 2013, 27, 7489-7496.	2.5	21

#	Article	IF	CITATIONS
181	Crude glycerol combustion: Particulate, acrolein, and other volatile organic emissions. Proceedings of the Combustion Institute, 2013, 34, 2749-2757.	2.4	65
182	Hydrocarbon species concentrations in nitrogen diluted ethylene-air laminar jet diffusion flames at elevated pressures. Proceedings of the Combustion Institute, 2013, 34, 1035-1043.	2.4	21
183	Environmental implications of iron fuel borne catalysts and their effects on diesel particulate formation andcomposition. Journal of Aerosol Science, 2013, 58, 50-61.	1.8	38
184	NO emissions from high swirl turbulent spray flames with highly oxygenated fuels. Proceedings of the Combustion Institute, 2013, 34, 1705-1712.	2.4	13
185	Effect of diluents on soot precursor formation and temperature in ethylene laminar diffusion flames. Combustion and Flame, 2013, 160, 656-670.	2.8	69
186	Aromatization of n-octane over Pd/C catalysts. Fuel, 2013, 103, 408-413.	3.4	12
187	Spray and atomization of diesel fuel and its alternatives from a single-hole injector using a common rail fuel injection system. Fuel, 2013, 103, 850-861.	3.4	163
188	ASI: <i>Dunaliella</i> marine microalgae to dropâ€in replacement liquid transportation fuel. Environmental Progress and Sustainable Energy, 2013, 32, 916-925.	1.3	17
189	Hydrocarbon Fuels From Gas Phase Decarboxylation of Hydrolyzed Free Fatty Acid. Journal of Energy Resources Technology, Transactions of the ASME, 2012, 134, .	1.4	9
190	Direct injection of superheated steam for continuous hydrolysis reaction. Chemical Engineering and Processing: Process Intensification, 2012, 59, 52-59.	1.8	9
191	Exploration of process parameters for continuous hydrolysis of canola oil, camelina oil and algal oil. Chemical Engineering and Processing: Process Intensification, 2012, 57-58, 51-58.	1.8	23
192	Hydrocarbon fuels from vegetable oils via hydrolysis and thermo-catalytic decarboxylation. Fuel, 2012, 95, 622-629.	3.4	104
193	CFD simulation of transient stage of continuous countercurrent hydrolysis of canola oil. Computers and Chemical Engineering, 2012, 43, 108-119.	2.0	16
194	Simulation and experimental investigation of turbulent non-premixed flames at high pressure. , 2012, , .		0
195	Influence of Geometry on Starting Vortex and Ejector Performance. Journal of Fluids Engineering, Transactions of the ASME, 2011, 133, .	0.8	11
196	Glycerol combustion and emissions. Proceedings of the Combustion Institute, 2011, 33, 2717-2724.	2.4	134
197	Comparison Between Numerically Simulated and Experimentally Measured Flowfield Quantities Behind a Pulsejet. Flow, Turbulence and Combustion, 2010, 84, 653-667.	1.4	22
198	Soot surface temperature measurements in pure and diluted flames at atmospheric and elevated pressures. Experimental Thermal and Fluid Science, 2008, 33, 17-22.	1.5	23

#	Article	IF	CITATIONS
199	A new methodology for targeting drug-aerosols in the human respiratory system. International Journal of Heat and Mass Transfer, 2008, 51, 5578-5589.	2.5	67
200	Combined Numerical and Experimental Investigation of a Hobby-Scale Pulsejet. Journal of Propulsion and Power, 2007, 23, 186-193.	1.3	22
201	Experimental and numerical investigation of an 8-cm valveless pulsejet. Experimental Thermal and Fluid Science, 2007, 31, 641-647.	1.5	18
202	RELATIVE POLYCYCLIC AROMATIC HYDROCARBON CONCENTRATIONS IN UNSTEADY COUNTERFLOW DIFFUSION FLAMES. Combustion Science and Technology, 2005, 177, 691-713.	1.2	27
203	Measurements of the soot volume field in laminar diffusion flames at elevated pressures. Combustion and Flame, 2005, 140, 60-69.	2.8	133
204	Acoustic damping rate measurements in binary mixtures of atomic species via transient-grating spectroscopy. Experiments in Fluids, 2005, 39, 687-693.	1.1	3
205	Measurements of laminar burning velocity and Markstein number using high-speed chemiluminescence imaging. Combustion and Flame, 2005, 141, 473-477.	2.8	29
206	Forced Convective Cooling via Acoustic Streaming in a Narrow Channel Established by a Vibrating Piezoelectric Bimorph. Flow, Turbulence and Combustion, 2005, 74, 195-206.	1.4	19
207	Effects of leading edge entrainment on the double flame structure in lifted ethanol spray flames. Experimental Thermal and Fluid Science, 2004, 29, 23-31.	1.5	42
208	FUEL LEWIS NUMBER EFFECTS IN UNSTEADY BURKE–SCHUMANN HYDROGEN FLAMES. Combustion Science and Technology, 2004, 177, 75-88.	1.2	8
209	Turbulence Filter and POD Analysis for Velocity Fields in Lifted CH4-Air Diffusion Flames. Flow, Turbulence and Combustion, 2003, 70, 21-41.	1.4	11
210	The response of a propane-air counter-flow diffusion flame subjected to a transient flow field. Combustion and Flame, 2003, 135, 285-297.	2.8	38
211	Transient grating spectroscopy with delayed thermalization in non-combusting CO/air mixtures. Optics Communications, 2003, 226, 255-258.	1.0	0
212	Analysis of transient-grating signals for reacting-flow applications. Applied Optics, 2003, 42, 566.	2.1	16
213	The Effects of Elevated Pressure on Soot Formation in Laminar Diffusion Flames. , 2003, , .		0
214	Goniometric characteristics of optical fibres for temperature measurement in diesel engine exhaust filters. Measurement Science and Technology, 2003, 14, 563-572.	1.4	4
215	Investigation of Gaseous Acoustic Damping Rates by Transient Grating Spectroscopy. AIAA Journal, 2002, 40, 1071-1077.	1.5	12
216	Evaluation of the transient response of a counter-flow diffusion flame using two-line OH PLIF		1

thermometry and PIV. , 2001, , .

#	Article	IF	CITATIONS
217	Investigation of pre-mixed flame-kernel/vortex interactions via high-speed imaging. Combustion and Flame, 2001, 126, 1827-1844.	2.8	26
218	Title is missing!. Flow, Turbulence and Combustion, 2001, 66, 23-36.	1.4	7
219	Gaseous transport properties measurements in high pressure environment by transient grating spectroscopy. , 2001, , .		1
220	Simultaneous particle-imaging velocimetry and OH planar laser-induced fluorescence measurements in an unsteady counterflow propane/air diffusion flame. Proceedings of the Combustion Institute, 2000, 28, 2021-2027.	2.4	16
221	Extinction of Laminar Counterflow Diffusion Flames of CH4and C3H8Fuels with Inert Jet Impingement. Combustion Science and Technology, 2000, 160, 103-118.	1.2	6
222	Transient Flow Field Effects on Soot Volume Fraction in Diffusion Flames. Combustion Science and Technology, 2000, 160, 165-189.	1.2	50
223	Single-Point Thermometry in High-Pressure, Sooting, Premixed Combustion Environments. Journal of Propulsion and Power, 1999, 15, 119-127.	1.3	37
224	Effect of unsteady stretch on spark-ignited flame kernel survival. Combustion and Flame, 1999, 118, 469-478.	2.8	37
225	Study of Transient Effects on the Extinction Limits of an Unsteady Counterflow Diffusion Flame. Combustion Science and Technology, 1999, 146, 57-84.	1.2	20
226	Advances in transient grating thermometry for reacting flows. , 1999, , .		0
227	Velocity and Thermal Structure, and Strain-Induced Extinction of 14 to 100% Hydrogen-Air Counterflow Diffusion Flames. Combustion and Flame, 1998, 112, 575-592.	2.8	51
228	<title>Thermometry in pressurized sooting flames using laser-induced gratings</title> . , 1997, 3172, 492.		2
229	Temperature measurement by degenerate four-wave mixing with strong absorption of the excitation beams. Applied Optics, 1996, 35, 6544.	2.1	5
230	Use of degenerate four-wave mixing for one-dimensional thermometry in high-enthalpy test facilities. , 1996, , .		0
231	Effect of unsteady stretch rate on OH chemistry during a flame-vortex interaction: To assess flamelet models. Combustion and Flame, 1995, 100, 323-331.	2.8	61
232	The Strain Exerted by a Vortex on a Flame—Determined from Velocity Field Images. Combustion Science and Technology, 1994, 96, 213-229.	1.2	50
233	Images of the quenching of a flame by a vortex—To quantify regimes of turbulent combustion. Combustion and Flame, 1993, 94, 58-69	2.8	196
234	A laminar vortex interacting with a premixed flame: Measured formation of pockets of reactants. Combustion and Flame, 1991, 87, 245-256.	2.8	105

#	Article	IF	CITATIONS
235	Reactions of alkylbenzyldimethylammonium halides with amide in liquid ammonia. Journal of Organic Chemistry, 1979, 44, 2348-2353.	1.7	14
236	Numerical Studies of Spray Combustion Processes of Palm Oil Biodiesel and Diesel Fuels using Reduced Chemical Kinetic Mechanisms. , 0, , .		7
237	Compositional Effects of Gasoline Fuels on Combustion, Performance and Emissions in Engine. SAE International Journal of Fuels and Lubricants, 0, 9, 460-468.	0.2	14
238	Primary Reference Fuels (PRFs) as Surrogates for Low Sensitivity Gasoline Fuels. , 0, , .		17
239	The Effect of Pressure, Temperature and Additives on Droplet Ignition of Lubricant Oil and Its Surrogate. , 0, , .		9
240	Auto-Ignition and Numerical Analysis on High-Pressure Combustion of Premixed Methane-Air mixtures in Highly Preheated and Diluted Environment. Combustion Science and Technology, 0, , 1-23.	1.2	6
241	A Comprehensive Experimental Study to Measure Laminar and Turbulent Burning Velocity of Haltermann Gasoline with Ternary Additives (O3, H2, and CO). , 0, , .		1
242	Characterizing flash boiling sprays of E10 gasoline from a high-pressure gasoline multi-hole injector. , 0, , .		2
243	Overall Energy Conversion Efficiency of a Thermocatalytic Multi-step Process to converter Triglycerides into Fungible Transportation Fuels. Renewable Energy and Power Quality Journal, 0, , 381-385.	0.2	0
244	Studying Ignition Delay Time of Lubricant Oil Mixed with Alcohols, Water and Toluene in IQT and CVCC. , 0, , .		3
245	Characterization of the Rate of Injection of Diesel Solenoid Injectors Operated in the Multiple Injection Strategy: A Comparison of the Spray Momentum and Bosch Tube Methods. Frontiers in Mechanical Engineering, 0, 8, .	0.8	3