
Fumin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8137594/publications.pdf Version: 2024-02-01

FUMIN ZHANC

#	Article	IF	CITATIONS
1	Strategies for improving the photocatalytic performance of metal-organic frameworks for CO2 reduction: A review. Journal of Environmental Sciences, 2023, 125, 290-308.	3.2	39
2	Highly dispersed palladium nanoclusters anchored on nanostructured hafnium(<scp>iv</scp>) oxide as highly efficient catalysts for the Suzuki–Miyaura coupling reaction. New Journal of Chemistry, 2022, 46, 8575-8582.	1.4	4
3	PdZn intermetallic compound stabilized on ZnO/nitrogen-decorated carbon hollow spheres for catalytic semihydrogenation of alkynols. Nano Research, 2022, 15, 3090-3098.	5.8	14
4	Construction of isolated Ni sites on nitrogen-doped hollow carbon spheres with Ni–N3 configuration for enhanced reduction of nitroarenes. Nano Research, 2022, 15, 6001-6009.	5.8	19
5	Mechanism of Catalytic Transfer Hydrogenation for Furfural Using Single Ni Atom Catalysts Anchored to Nitrogen-Doped Graphene Sheets. Inorganic Chemistry, 2022, 61, 9138-9146.	1.9	10
6	Boosting photocatalytic CO2 reduction over a covalent organic framework decorated with ruthenium nanoparticles. Chemical Engineering Journal, 2021, 405, 127011.	6.6	104
7	Highly dispersed Ru nanoparticles on a bipyridine-linked covalent organic framework for efficient photocatalytic CO ₂ reduction. Sustainable Energy and Fuels, 2021, 5, 2871-2876.	2.5	30
8	Boosted Catalytic Hydrogenation Performance Using Isolated Co Sites Anchored on Nitrogen-Incorporated Hollow Porous Carbon. Journal of Physical Chemistry C, 2021, 125, 5088-5098.	1.5	18
9	Atomically Dispersed Vanadium Sites Anchored on N-Doped Porous Carbon for the Efficient Oxidative Coupling of Amines to Imines. ACS Applied Materials & Interfaces, 2021, 13, 15168-15177.	4.0	25
10	Visible-light-driven photocatalytic CO ₂ reduction over ketoenamine-based covalent organic frameworks: role of the host functional groups. Catalysis Science and Technology, 2021, 11, 1717-1724.	2.1	46
11	Single Non-Noble Metal Atom Doped C2N Catalyst for Chemoselective Hydrogenation of 3-Nitrostyrene. Physical Chemistry Chemical Physics, 2021, 23, 25761-25768.	1.3	1
12	Mechanism of Selective Hydrogenation of 4-Nitrophenylacetylene Using Pt–Zn Intermetallic Nanoparticles: The Role of Hydrogen Coverage. Journal of Physical Chemistry C, 2021, 125, 23803-23812.	1.5	2
13	Fe/Fe3C@N-doped porous carbon microspindles templated from a metal–organic framework as highly selective and stable catalysts for the catalytic oxidation of sulfides to sulfoxides. Molecular Catalysis, 2020, 486, 110863.	1.0	12
14	Vanadium oxides anchored on nitrogen-incorporated carbon: An efficient heterogeneous catalyst for the selective oxidation of sulfide to sulfoxide. Catalysis Communications, 2020, 145, 106101.	1.6	14
15	Synthesis, characterization, and CO2 adsorption properties of metal–organic framework NH2–MIL–101(V). Materials Letters, 2020, 264, 127402.	1.3	17
16	Metal–organic framework derived Pd/ZrO ₂ @CN as a stable catalyst for the catalytic hydrogenation of 2,3,5â€ŧrimethylbenzoquinone. Applied Organometallic Chemistry, 2019, 33, e5233.	1.7	13
17	Ru nanoclusters supported on HfO2@CN derived from NH2-UiO-66(Hf) as stable catalysts for the hydrogenation of levulinic acid to γ-valerolactone. Catalysis Communications, 2019, 128, 105710.	1.6	17
18	Synergistic Catalysis of Ruthenium Nanoparticles and Polyoxometalate Integrated Within Single UiO⒒66 Microcrystals for Boosting the Efficiency of Methyl Levulinate to γ-Valerolactone. Frontiers in Chemistry, 2019, 7, 42.	1.8	12

Fumin Zhang

#	Article	IF	CITATIONS
19	Temperature modulation of defects in NH ₂ -UiO-66(Zr) for photocatalytic CO ₂ reduction. RSC Advances, 2019, 9, 37733-37738.	1.7	47
20	Pd/UiO-66(Hf): A highly efficient heterogeneous catalyst for the hydrogenation of 2,3,5-trimethylbenzoquinone. Catalysis Communications, 2018, 113, 23-26.	1.6	20
21	Coupling Ru nanoparticles and sulfonic acid moieties on single MIL-101 microcrystals for upgrading methyl levulinate into γ-valerolactone. Applied Catalysis A: General, 2018, 563, 54-63.	2.2	29
22	Azine-based covalent organic frameworks as metal-free visible light photocatalysts for CO2 reduction with H2O. Applied Catalysis B: Environmental, 2018, 239, 46-51.	10.8	203
23	Facile assembly of a S@carbon nanotubes/polyaniline/graphene composite for lithium–sulfur batteries. RSC Advances, 2017, 7, 9819-9825.	1.7	62
24	Cascade catalytic hydrogenation–cyclization of methyl levulinate to form γ-valerolactone over Ru nanoparticles supported on a sulfonic acid-functionalized UiO-66 catalyst. RSC Advances, 2017, 7, 44082-44088.	1.7	43
25	Enhanced photocatalytic CO ₂ reduction over Co-doped NH ₂ -MIL-125(Ti) under visible light. RSC Advances, 2017, 7, 42819-42825.	1.7	53
26	Pd nanoparticles encaged within amine-functionalized metal-organic frameworks: Catalytic activity and reaction mechanism in the hydrogenation of 2,3,5-trimethylbenzoquinone. Chemical Engineering Journal, 2017, 328, 977-987.	6.6	37
27	Rapid microwave-assisted synthesis of SnO2 quantum dots/reduced graphene oxide composite with its application in lithium-ion battery. Materials Letters, 2017, 209, 260-263.	1.3	12
28	Palladium Nanoparticles Supported on a Metal–Organic Frameworkâ€Partially Reduced Graphene Oxide Hybrid for the Catalytic Hydrodeoxygenation of Vanillin as a Model for Biofuel Upgrade Reactions. ChemCatChem, 2017, 9, 469-480.	1.8	56
29	Tunable catalytic properties of multi-metal–organic frameworks for aerobic styrene oxidation. Chemical Engineering Journal, 2016, 299, 135-141.	6.6	100
30	Immobilization of flower-like ZnO on activated carbon fibre as recycled photocatalysts. Research on Chemical Intermediates, 2016, 42, 8227-8237.	1.3	10
31	Fabrication of MIL-100(Fe)@SiO2@Fe3O4 core-shell microspheres as a magnetically recyclable solid acidic catalyst for the acetalization of benzaldehyde and glycol. Frontiers of Chemical Science and Engineering, 2016, 10, 534-541.	2.3	36
32	Synergetic catalysis of palladium nanoparticles encaged within amine-functionalized UiO-66 in the hydrodeoxygenation of vanillin in water. Green Chemistry, 2016, 18, 2900-2908.	4.6	175
33	Polyoxometalates confined in the mesoporous cages of metal–organic framework MIL-100(Fe): Efficient heterogeneous catalysts for esterification and acetalization reactions. Chemical Engineering Journal, 2015, 269, 236-244.	6.6	128
34	Palladium nanoparticles incorporated within sulfonic acid-functionalized MIL-101(Cr) for efficient catalytic conversion of vanillin. Journal of Materials Chemistry A, 2015, 3, 17008-17015.	5.2	107
35	Facile synthesis of MIL-100(Fe) under HF-free conditions and its application in the acetalization of aldehydes with diols. Chemical Engineering Journal, 2015, 259, 183-190.	6.6	237
36	Fabrication of <i><i>γ</i></i> Fe _{2} O _{3} Nanoparticles by Solid-State Thermolysis of a Metal-Organic Framework, MIL-100(Fe), for Heavy Metal Ions Removal. Journal of Chemistry, 2014, 2014, 1-6.	0.9	22

Fumin Zhang

#	Article	IF	CITATIONS
37	Hydroxylation of Benzene to Phenol by H2O2 over an Inorganic–Organic Dual Modified Heteropolyacid. Chinese Journal of Chemical Engineering, 2014, 22, 1220-1225.	1.7	7
38	Triethylamine-modified Keggin heteropolyacid: a novel phase-transfer catalyst for hydroxylation of benzene with H2O2. Research on Chemical Intermediates, 2014, 40, 1867-1877.	1.3	4
39	Effect of pH on the structural characteristics of in situ synthesized Ni-incorporated SBA-15 magnetic composites. Research on Chemical Intermediates, 2014, 40, 385-397.	1.3	7
40	Catalytic hydrogenation of 2,3,5-trimethylbenzoquinone over Pd nanoparticles confined in the cages of MIL-101(Cr). Chemical Engineering Journal, 2014, 239, 33-41.	6.6	59
41	Highly stable chromium(III) terephthalate metal organic framework (MIL-101) encapsulated 12-tungstophosphoric heteropolyacid as a water-tolerant solid catalyst for hydrolysis and esterification. Reaction Kinetics, Mechanisms and Catalysis, 2013, 109, 77-89.	0.8	35
42	Polyoxometalate-Based Amphiphilic Catalysts for Selective Oxidation of Benzyl Alcohol with Hydrogen Peroxide under Organic Solvent-Free Conditions. Industrial & Engineering Chemistry Research, 2013, 52, 10095-10104.	1.8	46
43	Sulfonic acid-functionalized MIL-101 as a highly recyclable catalyst for esterification. Catalysis Science and Technology, 2013, 3, 2044.	2.1	92
44	Direct synthesis of Nd3+ doped mesoporous TiO2 and investigation of its photocatalytic performance. Journal of Sol-Gel Science and Technology, 2012, 64, 564-570.	1.1	5
45	Direct oxidation of benzene to phenol by N2O over meso-Fe-ZSM-5 catalysts obtained via alkaline post-treatment. Catalysis Science and Technology, 2011, 1, 1250.	2.1	41
46	Magnetic-field induced formation of 1D Fe3O4/C/CdS coaxial nanochains as highly efficient and reusable photocatalysts for water treatment. Journal of Materials Chemistry, 2011, 21, 18359.	6.7	145
47	A microwave-assisted rapid route to synthesize ZnO/ZnS core–shell nanostructures via controllable surface sulfidation of ZnO nanorods. CrystEngComm, 2011, 13, 3438.	1.3	133
48	Pyridine-H5PMo10V2O40 hybrid catalysts for liquid-phase hydroxylation of benzene to phenol with molecular oxygen. Science in China Series B: Chemistry, 2009, 52, 1264-1269.	0.8	7
49	Adsorption of Nitrous Oxide on Activated Carbons. Journal of Chemical & Engineering Data, 2009, 54, 3079-3081.	1.0	25
50	Direct Hydroxylation of Benzene to Phenol with Molecular Oxygen over Pyridine-modified Vanadium-substituted Heteropoly Acids. Catalysis Letters, 2008, 124, 250-255.	1.4	18
51	Hydroxylation of Benzene with Hydrogen Peroxide over Highly Efficient Molybdovanadophosphoric Heteropoly Acid Catalysts. Chinese Journal of Chemical Engineering, 2007, 15, 895-898.	1.7	28
52	A new method for the synthesis of molybdovanadophosphoric heteropoly acids and their catalytic activities. Frontiers of Chemical Engineering in China, 2007, 1, 296-299.	0.6	7
53	Catalytic performances of heteropoly compounds supported on dealuminated ultra-stable Y zeolite for liquid-phase esterification. Science in China Series B: Chemistry, 2006, 49, 140-147.	0.8	19