Antonio Garcia-Moyano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8137529/publications.pdf

Version: 2024-02-01

all docs

623699 552766 27 990 14 26 g-index citations h-index papers 29 29 29 1497 docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Deciphering a Marine Bone-Degrading Microbiome Reveals a Complex Community Effort. MSystems, 2021, 6, .	3.8	10
2	Two-step functional screen on multiple proteinaceous substrates reveals temperature-robust proteases with a broad-substrate range. Applied Microbiology and Biotechnology, 2021, 105, 3195-3209.	3.6	6
3	The bone-degrading enzyme machinery: From multi-component understanding to the treatment of residues from the meat industry. Computational and Structural Biotechnology Journal, 2021, 19, 6328-6342.	4.1	2
4	Use of Flavin-Containing Monooxygenases for Conversion of Trimethylamine in Salmon Protein Hydrolysates. Applied and Environmental Microbiology, 2020, 86, .	3.1	5
5	Fragment Exchange Plasmid Tools for CRISPR/Cas9-Mediated Gene Integration and Protease Production in Bacillus subtilis. Applied and Environmental Microbiology, 2020, 87, .	3.1	9
6	A Novel Moderately Thermophilic Type Ib Methanotroph Isolated from an Alkaline Thermal Spring in the Ethiopian Rift Valley. Microorganisms, 2020, 8, 250.	3.6	10
7	New ecosystems in the deep subsurface follow the flow of water driven by geological activity. Scientific Reports, 2019, 9, 3310.	3.3	14
8	Decoding the ocean's microbiological secrets for marine enzyme biodiscovery. FEMS Microbiology Letters, 2019, 366, .	1.8	26
9	Bioprospecting Reveals Class III ï‰-Transaminases Converting Bulky Ketones and Environmentally Relevant Polyamines. Applied and Environmental Microbiology, 2019, 85, .	3.1	17
10	Diversity patterns and isolation of Planctomycetes associated with metalliferous deposits from hydrothermal vent fields along the Valu Fa Ridge (SW Pacific). Antonie Van Leeuwenhoek, 2018, 111, 841-858.	1.7	28
11	Determinants and Prediction of Esterase Substrate Promiscuity Patterns. ACS Chemical Biology, 2018, 13, 225-234.	3.4	106
12	Mutational analysis of the proâ€peptide of a marine intracellular subtilisin protease supports its role in inhibition. Proteins: Structure, Function and Bioinformatics, 2018, 86, 965-977.	2.6	5
13	Relationships between Substrate Promiscuity and Chiral Selectivity of Esterases from Phylogenetically and Environmentally Diverse Microorganisms. Catalysts, 2018, 8, 10.	3.5	11
14	Novel and Unexpected Microbial Diversity in Acid Mine Drainage in Svalbard ($78\hat{A}^{\circ}$ N), Revealed by Culture-Independent Approaches. Microorganisms, 2015, 3, 667-694.	3.6	44
15	Deciphering the Prokaryotic Community and Metabolisms in South African Deep-Mine Biofilms through Antibody Microarrays and Graph Theory. PLoS ONE, 2014, 9, e114180.	2.5	23
16	Comparative microbial ecology of the water column of an extreme acidic pit lake, Nuestra Señora del Carmen, and the RÃo Tinto basin (Iberian Pyrite Belt). International Microbiology, 2014, 17, 225-33.	2.4	9
17	Comparative microbial ecology study of the sediments and the water column of the RÃo Tinto, an extreme acidic environment. FEMS Microbiology Ecology, 2012, 81, 303-314.	2.7	82
18	From RÃo Tinto to Mars. Advances in Applied Microbiology, 2011, 77, 41-70.	2.4	28

#	Article	IF	CITATIONS
19	Nematoda from the terrestrial deep subsurface of South Africa. Nature, 2011, 474, 79-82.	27.8	196
20	Microbial ecology of RÃo Tinto, a natural extreme acidic environment of biohydrometallurgical interest. Hydrometallurgy, 2010, 104, 329-333.	4.3	18
21	Microbial Ecology of a Natural Extreme Acidic Environment: Lessons from RÃo Tinto. Advanced Materials Research, 2009, 71-73, 13-19.	0.3	4
22	Evaluation of Leptospirillum spp. in the RÃo Tinto, a model of interest to biohydrometallurgy. Hydrometallurgy, 2008, 94, 155-161.	4.3	31
23	An oligonucleotide prokaryotic acidophile microarray: its validation and its use to monitor seasonal variations in extreme acidic environments with total environmental RNA. Environmental Microbiology, 2008, 10, 836-850.	3.8	41
24	Microbial Ecology of <i>Leptospirillum </i> spp. in RÃo Tinto, a Model of Interest to Biohydrometallurgy. Advanced Materials Research, 2007, 20-21, 409-412.	0.3	2
25	Extreme environments as Mars terrestrial analogs: The Rio Tinto case. Planetary and Space Science, 2007, 55, 370-381.	1.7	166
26	Prokaryotic community composition and ecology of floating macroscopic filaments from an extreme acidic environment, RÃo Tinto (SW, Spain). Systematic and Applied Microbiology, 2007, 30, 601-614.	2.8	92
27	Characterization of the Anoxic Sediments of Rio Tinto: Biohydrometallurgical Implications. Advanced Materials Research, 0, 71-73, 109-112.	0.3	4