Lili Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8137177/publications.pdf

Version: 2024-02-01

430874 361022 1,327 42 18 35 citations h-index g-index papers 42 42 42 1534 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	Machine learning method intervention: Determine proper screening tests for vestibular disorders. Auris Nasus Larynx, 2022, 49, 564-570.	1.2	7
2	Effects of Pleurotus ostreatus on Physicochemical Properties and Residual Nitrite of the Pork Sausage. Coatings, 2022, 12, 484.	2.6	2
3	Reconfigurable Fiber Triboelectric Nanogenerator for Self-Powered Defect Detection. ACS Nano, 2022, 16, 7721-7731.	14.6	15
4	Anti-Diabetic Activity of Polysaccharides from Auricularia cornea var. Li Foods, 2022, 11, 1464.	4.3	6
5	Synthesis and Characterization of Porous Chitosan/Saccharomycetes Adsorption Microspheres. Polymers, 2022, 14, 2292.	4.5	6
6	Acid hydrolysis of amylose granules and effect of molecular weight on properties of ethanol precipitated amylose nanoparticles. Carbohydrate Polymers, 2021, 252, 117243.	10.2	8
7	Detection of Volatile Organic Compounds (VOCs) in Livestock Houses Based on Electronic Nose. Applied Sciences (Switzerland), 2021, 11, 2337.	2.5	8
8	Preparation and Physicochemical Properties of Catechin/ \hat{l}^2 -cyclodextrin Inclusion Complex Nanoparticles. Food Biophysics, 2021, 16, 317-324.	3.0	7
9	Preparation of Freeze-Dried Porous Chitosan Microspheres for the Removal of Hexavalent Chromium. Applied Sciences (Switzerland), 2021, 11, 4217.	2.5	14
10	Cooperation behavior of fore―And hindlimbs during jumping in <i>Rana dybowskii</i> and <i>Xenopus laevis</i> . Ecology and Evolution, 2021, 11, 7569-7578.	1.9	2
11	Preparation and Characterization of Functional Films Based on Chitosan and Corn Starch Incorporated Tea Polyphenols. Coatings, 2021, 11, 817.	2.6	26
12	Morphology and mechanical performance between the skin surface of Rana dybowskii and Bufo gargarizans. Biosurface and Biotribology, 2021, 7, 133-141.	1.5	0
13	Effects of Pine Bark Extract on Physicochemical Properties and Biological Activity of Active Chitosan Film by Bionic Structure of Dragonfly Wing. Coatings, 2021, 11, 1077.	2.6	4
14	Preparation and characterization of chitosan/polyvinyl porous alcohol aerogel microspheres with stable physicochemical properties. International Journal of Biological Macromolecules, 2021, 187, 614-623.	7.5	25
15	Use of Tremella as Fat Substitute for the Enhancement of Physicochemical and Sensory Profiles of Pork Sausage. Foods, 2021, 10, 2167.	4.3	6
16	Traditional Sensory Evaluation and Bionic Electronic Nose as Innovative Tools for the Packaging Performance Evaluation of Chitosan Film. Polymers, 2020, 12, 2310.	4.5	6
17	Encapsulation of Lutein into Starch Nanoparticles to Improve Its Dispersity in Water and Enhance Stability of Chemical Oxidation. Starch/Staerke, 2019, 71, 1800248.	2.1	6
18	Physicochemical properties of catechin \hat{I}^2 -cyclodextrin inclusion complex obtained via co-precipitation. CYTA - Journal of Food, 2019, 17, 544-551.	1.9	49

#	Article	IF	Citations
19	Chain Length Distribution of $\hat{l}^2\hat{a}\in a$ mylase Treated Potato Starch and Its Effect on Properties of Starch Nanoparticles Obtained by Nanoprecipitation. Starch/Staerke, 2019, 71, 1800321.	2.1	5
20	Production of Pork Sausages Using <i>Pleaurotus eryngii</i> with Different Treatments as Replacements for Pork Back Fat. Journal of Food Science, 2019, 84, 3091-3098.	3.1	32
21	Hydrophobic nanostructures fabricated by ferric nitrate etching method on single crystalline silicon surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 123999.	4.7	5
22	Preparation and characterization of porous chitosan microspheres and adsorption performance for hexavalent chromium. International Journal of Biological Macromolecules, 2019, 135, 898-906.	7.5	96
23	Characterization of amylose nanoparticles prepared via nanoprecipitation: Influence of chain length distribution. Carbohydrate Polymers, 2018, 194, 154-160.	10.2	17
24	Purification of Tea saponins and Evaluation of its Effect on Alcohol Dehydrogenase Activity. Open Life Sciences, 2018, 13, 56-63.	1.4	21
25	Fabrication and characterization of chitin nanofibers through esterification and ultrasound treatment. Carbohydrate Polymers, 2018, 180, 81-87.	10.2	67
26	Convenient Method for Enhancing Hydrophobicity and Dispersibility of Starch Nanocrystals by Crosslinking Modification with Citric Acid. International Journal of Food Engineering, 2018, 14, .	1.5	11
27	Fabrication and characterisation of cellulose nanocrystals from microcrystalline cellulose by esterification and ultrasound treatment. Micro and Nano Letters, 2018, 13, 1574-1579.	1.3	5
28	Performance improvement of starch films reinforced with starch nanocrystals (SNCs) modified by crossâ€inking. Starch/Staerke, 2017, 69, 1600025.	2.1	16
29	High efficiency and low cost preparation of size controlled starch nanoparticles through ultrasonic treatment and precipitation. Food Chemistry, 2017, 227, 369-375.	8.2	80
30	Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films. International Journal of Biological Macromolecules, 2017, 105, 1636-1643.	7.5	271
31	Simultaneous Analysis of Tocopherols, Phytosterols, and Squalene in Vegetable Oils by High-Performance Liquid Chromatography. Food Analytical Methods, 2017, 10, 3716-3722.	2.6	45
32	Influence of ultrasonic treatment on formation of amylose nanoparticles prepared by nanoprecipitation. Carbohydrate Polymers, 2017, 157, 1413-1418.	10.2	31
33	Biomimetic hydrophobic surfaces with low or high adhesion based on poly(vinyl alcohol) and SiO2 nanoparticles. Journal of Bionic Engineering, 2017, 14, 476-485.	5.0	16
34	Hydrophobic starch nanocrystals preparations through crosslinking modification using citric acid. International Journal of Biological Macromolecules, 2016, 91, 1186-1193.	7.5	91
35	Dual modification of starch nanocrystals via crosslinking and esterification for enhancing their hydrophobicity. Food Research International, 2016, 87, 180-188.	6.2	52
36	Effects of nonâ€solvent and starch solution on formation of starch nanoparticles by nanoprecipitation. Starch/Staerke, 2016, 68, 258-263.	2.1	50

#	Article	IF	CITATION
37	Simultaneous HPLC–DAD Analysis of Tocopherols, Phytosterols, and Squalene in Vegetable Oil Deodorizer Distillates. Chromatographia, 2015, 78, 273-278.	1.3	19
38	Optimization of corn starch succinylation using response surface methodology. Starch/Staerke, 2014, 66, 508-514.	2.1	9
39	Hydrophobization of starch nanocrystals through esterification in green media. Industrial Crops and Products, 2014, 59, 115-118.	5.2	31
40	A method for improving dispersion of starch nanocrystals in water through crosslinking modification with sodium hexametaphosphate. Carbohydrate Polymers, 2012, 87, 1874-1876.	10.2	75
41	Effect of surface esterification with octenyl succinic anhydride on hydrophilicity of corn starch films. Journal of Applied Polymer Science, 2009, 114, 940-947.	2.6	28
42	Surface esterification of corn starch films: Reaction with dodecenyl succinic anhydride. Carbohydrate Polymers, 2009, 78, 888-893.	10.2	57